One of the goals of this research is to arrive at an implementation of a CAN-bus that can be used for lab exercises in regular student courses. In this paper, an overview is given of our basic ideas concerning the CAN concept and its application to the control of a manufacturing system. This system consists of two robots, a milling machine and some transportation means. In this system, every workstation will have its own CAN controller. The concept consists of a specially designed hardware structure, embedded software for the protocol and initialisation and a high level production environment, that makes it possible to configure a production system in an easy way.
In software architecture, the Layers pattern is commonly used. When this pattern is applied, the responsibilities of a software system are divided over a number of layers and the dependencies between the layers are limited. This may result in benefits like improved analyzability, reusability and portability of the system. However, many layered architectures are poorly designed and documented. This paper proposes a typology and a related approach to assign responsibilities to software layers. The Typology of Software Layer Responsibility (TSLR) gives an overview of responsibility types in the software of business information systems; it specifies and exemplifies these responsibilities and provides unambiguous naming. A complementary instrument, the Responsibility Trace Table (RTT), provides an overview of the TSLR-responsibilities assigned to the layers of a case-specific layered design. The instruments aid the design, documentation and review of layered software architectures. The application of the TSLR and RTT is demonstrated in three cases.
Studenten van Fontys Hogeschool ICT/Technische Informatica hebben vorig jaar hard gewerkt aan een minihovercraft. Die moest dienen als studieobject voor een aantal MKB'ers, die met een Raak Lightsubsidie meer informatie wilden inwinnen over het bouwen van toepassingen met embedded Linux en verschillende periferieën, waaronder WLan, USB-verbindingen, een afstandsbediening via een webservice-PDA-combinatie en een realtime aansturing van motoren.
De technische en economische levensduur van auto’s verschilt. Een goed onderhouden auto met dieselmotor uit het bouwjaar 2000 kan technisch perfect functioneren. De economische levensduur van diezelfde auto is echter beperkt bij introductie van strenge milieuzones. Bij de introductie en verplichtstelling van geavanceerde rijtaakondersteunende systemen (ADAS) zien we iets soortgelijks. Hoewel de auto technisch gezien goed functioneert kunnen verouderde software, algorithmes en sensoren leiden tot een beperkte levensduur van de gehele auto. Voorbeelden: - Jeep gehackt: verouderde veiligheidsprotocollen in de software en hardware beperkten de economische levensduur. - Actieve Cruise Control: sensoren/radars van verouderde systemen leiden tot beperkte functionaliteit en gebruikersacceptatie. - Tesla: bij bestaande auto’s worden verouderde sensoren uitgeschakeld waardoor functies uitvallen. In 2019 heeft de EU een verplichting opgelegd aan automobielfabrikanten om 20 nieuwe ADAS in te bouwen in nieuw te ontwikkelen auto’s, ongeacht prijsklasse. De mate waarin deze ADAS de economische levensduur van de auto beperkt is echter nog onvoldoende onderzocht. In deze KIEM wordt dit onderzocht en wordt tevens de parallel getrokken met de mobiele telefonie; beide maken gebruik van moderne sensoren en software. We vergelijken ontwerpeisen van telefoons (levensduur van gemiddeld 2,5 jaar) met de eisen aan moderne ADAS met dezelfde sensoren (levensduur tot 20 jaar). De centrale vraag luidt daarom: Wat is de mogelijke impact van veroudering van ADAS op de economische levensduur van voertuigen en welke lessen kunnen we leren uit de onderliggende ontwerpprincipes van ADAS en Smartphones? De vraag wordt beantwoord door (i) literatuuronderzoek naar de veroudering van ADAS (ii) Interviews met ontwerpers van ADAS, leveranciers van retro-fit systemen en ontwerpers van mobiele telefoons en (iii) vergelijkend rij-onderzoek naar het functioneren van ADAS in auto’s van verschillende leeftijd en prijsklassen.
In Nederland heeft slechts 1% van de blinden een blindengeleidehond, terwijl een geleidehond het ideale hulpmiddel voor de doelgroep is. Een hond neemt de zichtfunctie over en neemt autonome navigatiebeslissingen wat een aanzienlijke fysieke energiebesparing oplevert voor de gebruiker. Helaas is een blindengeleidehond niet geschikt voor iedereen met een visuele beperking. Blindsight Mobility ontwikkelt een elektronisch sensor-gestuurd alternatief van een blindengeleidehond dat voor een bredere doelgroep toegankelijk is. Met moderne technieken brengt het zijn omgeving in kaart en begeleidt zijn gebruiker aan de hand, net als een geleidehond. Daarbovenop worden functionaliteiten toegevoegd die alleen mogelijk zijn met een elektronisch hulpmiddel.
AANLEIDING In het RAAK-MKB project ‘Gelijkspanning breng(t) je verder’ heeft De Haagse Hogeschool, specifiek de opleiding Elektrotechniek, ervaren dat de opkomst van het onderwerp ‘Gelijkspanning’ (ook wel DC) in het beroepenveld sterk samenhangt met ontwikkelingen in het vakgebied van ‘Vermogenselektronica’ of ‘Power Eletronics’. Het beroepenveld vraagt steeds vaker om steeds meer kennis op dit vakgebied, in het kader van bijvoorbeeld de energietransitie, Smart Grids, Internet-of-Things etc. Om deze kennis op een goed gestructureerde wijze over te dragen aan studenten, moeten er een aantal belemmeringen worden weggewerkt. Een van deze belemmeringen is de beperkte beschikbaarheid van kennis; het vakgebied is relatief nieuw en nog sterk in ontwikkeling. Binnen De Haagse Hogeschool is door de opleiding Elektrotechniek (met kennis van de nog weg te werken belemmeringen) de bewuste keuze gemaakt om zich binnen Nederland te willen profileren met het onderwerp ‘Gelijkspanning’. Vanuit het eerdere RAAK-MKB project ‘Gelijkspanning breng(t) je verder’ werden hiertoe een eerste vak en practicum ontwikkeld: Vermogenselektronica 1. Hierin worden beginselen van DC-DC omvormers behandeld. DC-DC omvormers zorgen voor het transformeren van DC-spanningen, om energie bij hoge spanningen en dus lage verliezen te kunnen transporteren. Vanaf het huidige collegejaar (2015-2016) is ook een tweede vak op dit gebied toegevoegd aan het curriculum: Vermogenselektronica 2: hierin worden DC-AC omvormers op hoofdlijnen behandeld. Deze omvormers zorgen ervoor dat veel gebruikte types motoren aangedreven kunnen worden met gelijkspanning. Deze hoofdlijnen staan in de ogen van het beroepenveld nog (te) ver af van toepassingen waarmee zij werken. Daarbij moet gedacht worden aan bijvoorbeeld elektrische mobiliteit (specifieke types motoren), verlichting (DC-DC), distributietechnieken (DC-DC op hogere vermogens) of slimme netten (integratie van energietechniek, communicatietechnologie en regeltechniek / embedded systems). DOELSTELLING Het doel van het project is het opstellen van een implementatiewijze ter verdere invulling van de onderwerpen ‘Gelijkspanning’ en ‘Vermogenselektronica’ in het curriculum van de opleiding Elektrotechniek voor de teamleider van Elektrotechniek van De Haagse Hogeschool om de gewenste profilering te kunnen realiseren. ACTIVITEITEN Vanuit de curriculum commissie van de opleiding Elektrotechniek wordt opdracht gegeven aan een apart team om het implementatievoorstel voor te bereiden. Hierin werken twee docent/onderzoekers samen met de teamleider en enkele extern specialisten. In vijf opeenvolgende stappen wordt op een top-down manier gewerkt aan 1. Formuleren competenties voor DC 2. Hoofdstromen curriculum inrichten 3. Uitwerken vakinhoudelijke gebieden Elektrotechniek (‘leeg vel papier’) 4. Koppelen opzet aan bezetting en kennis in het team en bij partners 5. Voorbereiden besluitvorming RESULTAAT Op deze wijze wordt een heldere visie ontwikkeld op het benodigde onderwijs om het onderwerp gelijkspanning gestructureerd aan te kunnen bieden. Daarbij gaat het om vakinhoudelijke kennis in vakken, met bijbehorende practica en projecten. Om deze kennis goed aan te bieden wordt nadrukkelijk ook de samenwerking met andere kennisinstellingen (zoals Zuyd Hogeschool en de TU-Delft) gezocht.