Ongeveer een derde van onze nationale energieconsumptie wordt gebruikt in gebouwen voor verwarming, koeling, verlichting en elektrische apparatuur. Milieuoverwegingen, voorzieningszekerheid en kosten maken dat wij slim met de energievoorziening in de gebouwde omgeving om moeten gaan. Maar alle slimheid, innovatie en creativiteit ten spijt is het gasverbruik van woningen gebouwd in 2010 niet lager dan van woningen gebouwd in 1995, zijn de woningen niet gezonder geworden, gebruikt de gebouwde omgeving ook nog ieder jaar meer elektriciteit en zijn er nauwelijks duurzame installaties die naar behoren werken. Wat leren wij daarvan? Hoe zorgen wij ervoor dat duurzaamheid meer dan een losse kreet wordt en onze hele energieketen echt duurzaam wordt? Naast innovatie en creativiteit zijn kennis en vakmanschap belangrijk. Systemen modelleren en simuleren, en het gebruiken van virtual environments om grip te krijgen op het ontwerp, regeling en onderhoud van complexe binnenklimaatinstallaties en energie-installaties zullen hierbij in de toekomst een steeds belangrijkere rol gaan spelen.
Martien Visser: verbreedt én verdiep de SDE.De SDE (Stimulering Duurzame Energieproductie) wordt vanaf volgend jaar verbreed. Niet alleen de productie van hernieuwbare energie, maar ook andere maatregelen om de Nederlandse CO2-emissie te verlagen worden meegenomen. De SDE kijkt helaas slechts naar hoeveelheden. Het energiesysteem blijft buiten beschouwing. Netwerkproblemen zijn het resultaat en op termijn gebrekkige aansluiting tussen aanbod en vraag naar energie. Het wordt hoog tijd dat we bij de rangschikking van projecten in de SDE ook de impact op het energiesysteem gaan meewegen. Naast verbreden, moet de SDE ook verdiepen.
LINK
In zijn openbare les “Nieuwe energie in de stad; stip op de horizon laat Ivo Opstelten niet alleen zien dat een transitie naar energieneutrale gebouwde omgeving wenselijk en realiseerbaar is voor het midden van deze eeuw, maar dat deze transitie in feite al begonnen is. Naar analogie met de geslaagde aardgastransitie in Nederland van de jaren zestig, gaat hij in op drie aspecten die de energietransitie tot een succes maken. 1.motivatie van gebruikers om zelf in actie te komen; 2.ontwikkeling van marktrijpe gebouw- en gebiedsconcepten voor de energieneutrale gebouwde omgeving; 3.het vraagstuk van opschaling.
INLEIDING: De Hogeschool Utrecht heeft op basis van praktijkgericht onderzoek een innovatief modulair bouwconcept (#SELFIECIENT) ontwikkeld. Met diverse gestandaardiseerde modulaire bouwdelen van #SELFIECIENT kan eenvoudig een bouwgevel worden samengesteld, en daarmee een gehele woning. Met behulp van deze SIA RAAK TAKE OFF subsidie wordt dit concept nu door enkele ondernemende studenten omgezet naar een marktwaardig product. HET PROBLEEM: #SELFIECIENT tackelt drie belangrijke uitdagingen in de huidige bouwsector / gebouwde omgeving op een nieuwe en innovatieve wijze, te weten 1) de ontwikkeling van circulaire en klimaat neutrale woningen, 2) de ontwikkeling van betaalbare woningen en 3) de ontwikkeling van flexibele / adaptieve woningen. DE OPLOSSING: De oplossing voor bovengenoemde uitdagingen ligt in het industrieel vervaardigen van modulaire bouwdelen op basis van circulaire materialen, die de realisatie van een comfortabele, betaalbare, klimaat neutrale en adaptieve woning garanderen = #SELFIECIENT. DE INNOVATIE: De modulaire bouwdelen van #SELFIECIENT hebben de volgende innovatieve eigenschappen. 1) Revolutionair is het ontwikkelen van geïntegreerde multifunctionele bouwdelen die in diverse marktsegmenten toegepast kunnen worden; 2) Schaalbaarheid door middel van (open source) standaardisatie en de mogelijkheid van hergebruik. 3) Industrialisatie van het productieproces van de modulaire bouwgevels waardoor goedkoop en milieuvriendelijke kan worden geproduceerd; 4) Vanuit externe industrieën zoals o.a. de ICT en duurzame energie sector ontstaan nieuwe producten die kunnen worden geïntegreerd in woning en die leiden tot nieuwe businesscases en exploitatie modellen. Voorbeelden zijn gedistribueerde IT-servers en lokale accu opslag systemen. MARKTANALYSE / VERDIENMODEL: De modulaire bouw elementen kennen een brede toepasbaarheid, waardoor er een groot marktpotentieel is. Voorbeelden zijn woningrenovatie, nieuwbouw, de toenemende vraag naar levensloopbestendige woningen, woningen voor vluchtelingen, en renovatie van kantoorpanden. Slechts een miniem marktaandeel in de renovatie of nieuwbouw betekent al een omzet van meer dan miljoenen euro’s. Er zijn zover bekend geen andere aanbieders van gelijksoortige producten op de markt. Het te verwachten verdienmodel is gebaseerd op de verkoop van de modulaire bouwdelen of een leen/lease exploitatie van de modulaire bouwdelen. DOEL VAN HET PROJECT / BUDGET (39900€): Het doel van het project is drieledig: 1) het uitwerken van het ontwerp van de modulaire bouwdelen op basis van eerdere ontwerpen en ideeën uit praktijkgericht onderzoek (14960€); 2) het maken van een proof-of-principle van het modulaire bouwdeel (13320€); 3) het uitvoeren van een haalbaarheidsstudie (8560€); en 4) het versterken van de entrepreneurial skills (3060€.). PROJECT TEAM: Een sterk team is gevormd om dit modulaire bouwconcept door te zetten naar een bijzonder bedrijf. Het team bestaat uit 3 ondernemende studenten, onderzoekers en lectoren verbonden aan het lectoraat Nieuwe Energie in de Stad, docenten van de opleiding werktuigbouwkunde en bouwkunde, en een ervaren entrepreneur. De studenten zijn al vroeg tijden hun opleiding gespot als bijzonder initiatiefrijk, gedreven en ondernemende studenten. Het studententeam bestaat uit een goede mix van werktuigbouwkunde, bouwkunde en technische bedrijfskunde.
Dit KIEM-VANG project gaat een bijdrage leveren aan het verwerken en beter verwaarden van heterogene biotische afvalstromen zoals restaurantafval. Voor een dergelijke afvalstroom is verwaarden van individuele componenten problematisch en de stroom wordt daarom doorgaans door vergisting omgezet in biogas. Een vloeibare energiedrager als methanol zou hanteerbaarder en attractiever zijn, bijvoorbeeld voor opslag. Bovendien is methanol één van de belangrijkste platformchemicaliën voor de chemische industrie. Methanol wordt nu gemaakt uit aardgas in een duur en complex proces. Dit project beoogt de haalbaarheid van een alternatieve route van biogas naar methanol te onderzoeken: omzetting van biogas naar methanol in een biologische route. De biologische productie van methanol uit biogas draagt bij aan het verminderen van het gebruik van fossiele bronnen en broeikasgasemissies, creëert een nieuwe kringloop van biotisch afval naar hernieuwbare chemische synthese en is potentieel decentraal en kleinschalig toe te passen. Kleinschaligheid impliceert decentrale productie en opslag, vergemakkelijkt de logistiek, vermindert benodigde investeringen en verhoogt tevens de zichtbaarheid voor en daarmee de acceptatie door het grote publiek. Het onderzoek richt zich met literatuurstudie, virtueel prototyping en laboratoriumtesten op de technologische (biologische en/of chemische) parameters die de efficiënte productie van methanol uit biogas bepalen, met aandacht voor katalysatoren, (kunstmatige) enzymen en microbiële omzetting, resulterend in het conceptontwerp van een grote installatie. Daarnaast wordt de economische haalbaarheid en duurzaamheid van biologische methanolproductie onderzocht en vergeleken met bestaande alternatieven in een adaptief rekenmodel met het oog op duurzame inpassing in (kleinschalige) biogasketens. De samenwerkende MKB’s Enki Energie en Physixfactor zien kansen met dit idee hun marktpositie in kleinschalige duurzame energie (Enki) en het doorrekenen van innovatieve installaties (Physixfactor) uit te breiden. Samen met de kennisinstelling Hanze University of Applied Sciences Groningen is een goede aanzet te geven tot een groter vervolgproject met een groter kennisnetwerk van belang en belangstelling hebbende bedrijven en kennisinstellingen.
Dit projectvoorstel is gericht op het samen met lokale coöperaties ontwikkelen van innovatieve energiediensten, onder meer om problemen als netcongestie het hoofd te bieden. Deze energiediensten bieden lokale coöperaties kansen om economisch renderende taken op te pakken. Bovendien worden de mogelijkheden voor regionale energiediensten onderzocht. Met regionale samenwerking kunnen lokale coöperaties worden ondersteund, kennis van netbeheer verworven worden en gezamenlijk zijn lokale coöperaties een effectieve gesprekspartner voor netbeheerders. Het project kent een vijftal werkpakketten, die ieder een specifiek onderwerp bestrijken. In werkpakket 1 wordt samen met lokale energiecoöperaties gewerkt aan het verkennen van de behoeften aan en mogelijkheden van lokale energiediensten. Hoe kunnen coöperaties zinvol gebruik maken van de (vernieuwde en oude) Experimentenregeling? In werkpakket 2 wordt onderzocht welke mogelijkheden er zijn om op regionaal niveau coöperatieve energiediensten te leveren, zoals flexibiliteitsdiensten, energieopslag en vraagzijdesturing. In werkpakket 3 wordt in kaart gebracht welke mogelijkheden blockchain-achtige oplossingen bieden voor onderlinge levering van energie door prosumers en lokale energiecoöperaties. Werkpakket 4 onderzoekt de juridische aspecten van onder meer het EU-Clean Energy Package en de Experimentenregeling in relatie met lokale duurzame energie. Op basis daarvan wordt een ‘juridische routekaart’ ontwikkeld die coöperaties zal helpen om de juridische routes van louter opwek naar een actievere rol in het energiesysteem te verkennen. Werkpakket 5 tenslotte is gericht op coördinatie van het project en verspreiding van de resultaten in de vorm van netwerkbijeenkomsten, een nieuwsbrief en artikelen. Het project sluit nauw aan bij verschillende onderwijsmodules van de Hanzehogeschool, zoals de Innovatiewerkplaats (IWP) Energy Markets van Entrance en de Master Energy For Society.