Distribution structures, as studied in this paper, involve the spatial layout of the freight transport and storage system used to move goods between production and consumption locations. Decisions on this layout are important to companies as they allow them to balance customer service levels and logistics costs. Until now there has been very little descriptive research into the factors that drive decisions about these structures. Moreover, the literature on the topic is scattered across various research streams. In this paper we review and consolidate this literature, with the aim to arrive at a comprehensive list of factors. Three relevant research streams were identified: Supply Chain Management (SCM), Transportation and Geography. The SCM and Transportation literature mostly focus on distribution structure including distribution centre (DC) location selection from a viewpoint of service level and logistics costs factors. The Geography literature focuses on spatial DC location decisions and resulting patterns mostly explained by location factors such as labour and land availability. Our review indicates that the main factors that drive decision-making are “demand level”, “service level”, “product characteristics”, “logistics costs”, “labour and land”, “accessibility” and “contextual factors”. The main trade-off influencing distribution structure selection is “service level” versus “logistics costs”. Together, the research streams provide a rich picture of the factors that drive distribution structure including DC location selection. We conclude with a framework that shows the relative position of these factors. Future work can focus on completing the framework by detailing out the sub factors and empirically testing the direction and strength of relationships. Cooperation between the three research streams will be useful to further extend and operationalize the framework.
Distribution structures and distribution centre (DC) locations are essential for logistics companies to optimise logistics costs and service levels. This paper reviews Supply Chain Management (SCM), Geography and Economic Geographic literature on distribution structure and DC locations decision-making. Two central decision-making elements are discussed: process steps and decision-making factors. Added value of our paper is 1) A literature review 2) Conclusions on the state of current scientific knowledge in three research streams 3) A research agenda. Reviewing literature shows decision-making factors are renowned, however, importance of factors in each process step is unknown. Results also show literature diverges on which process steps logistics companies take (descriptive) or should optimally take (prescriptive) in distribution structure and DC location decision-making. Thus, more research is needed. Developing a descriptive conceptual model and testing on several industry sectors will be valuable to understand differences on distribution structure and DC location decision-making.
Reducing energy consumption in urban households is essential for reaching the necessary climate research and policy targets for CO2 reduction and sustainability. The dominant approach has been to invest in technological innovations that increase household energy efficiency. This article moves beyond this approach, first by emphasising the need to prioritise reducing energy demand over increasing energy efficiency and, second, by addressing the challenge of energy consumption at the level of the community, not the individual household. It argues that energy consumption is shaped in and by social communities, which construct consciousness of the energy implications of lifestyle choices. By analysing a specific type of community, a digital community, it looks at the role that communication on online discussion boards plays in the social process of questioning energy needs and shaping a “decent lifestyle”. The article explores three social processes of community interaction around energy practices – coercive, mimetic, and normative – questioning the ways in which they contribute to the activation of energy discursive consciousness. In conclusion, the article reflects on the potential implications of these social processes for future research and interventions aimed at reducing energy demand. To illustrate how the three selected social processes influence one another, the article builds on the results of a research project conducted in Amsterdam, analysing the potential contribution of online discussion boards in shaping energy norms in the Sustainable Community of Amsterdam Facebook group.
The energy transition is a highly complex technical and societal challenge, coping with e.g. existing ownership situations, intrusive retrofit measures, slow decision-making processes and uneven value distribution. Large scale retrofitting activities insulating multiple buildings at once is urgently needed to reach the climate targets but the decision-making of retrofitting in buildings with shared ownership is challenging. Each owner is accountable for his own energy bill (and footprint), giving a limited action scope. This has led to a fragmented response to the energy retrofitting challenge with negligible levels of building energy efficiency improvements conducted by multiple actors. Aggregating the energy design process on a building level would allow more systemic decisions to happen and offer the access to alternative types of funding for owners. “Collect Your Retrofits” intends to design a generic and collective retrofit approach in the challenging context of monumental areas. As there are no standardised approaches to conduct historical building energy retrofits, solutions are tailor-made, making the process expensive and unattractive for owners. The project will develop this approach under real conditions of two communities: a self-organised “woongroep” and a “VvE” in the historic centre of Amsterdam. Retrofit designs will be identified based on energy performance, carbon emissions, comfort and costs so that a prioritisation strategy can be drawn. Instead of each owner investing into their own energy retrofitting, the neighbourhood will invest into the most impactful measures and ensure that the generated economic value is retained locally in order to make further sustainable investments and thus accelerating the transition of the area to a CO2-neutral environment.
As electric loads in residential areas increase as a result of developments in the areas of electric vehicles, heat pumps and solar panels, among others, it is becoming increasingly likely that problems will develop in the electricity distribution grid. This research will analyse different solutions to such problems to determine Using a model developed as part of this project, we will simulate various cases to determine under which circumstances load balancing at a community-level is more (cost) effective than alternative solutions (e.g. grid reinforcement and/or household batteries).
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.