Designs for improving energy efficiency in historical buildings are tailor made. For initiators the flexible character of design processes raises uncertainty about why certain energy measures are (not) allowed. How is decision making in thedesign process organised? And what mechanisms influence tailor made designs? In this paper we present an integral design method for energy efficient restoration. Our theoretical background draws on two sources. Firstly, we follow design theory with distinct generic and specific designs. Secondly we use the ‘heritage-as-a-spatial-factor’ approach, where participants with different backgrounds focus on adding value to heritage. By applying the integral design method, we evaluate decision making processes and reflect on heritage approaches. We suggest how the integral design method can be improved andquestion the parallel existence of heritage approaches.
DOCUMENT
The conservation of our heritage buildings is a European wide policy objective. Historical buildings are not only works of art, but embody an important source of local identity and form a connection to our past. Protection agencies aim to preserve historical qualities for future generations. Their work is guided by restoration theory, a philosophy developed and codified in the course of the 19th and 20th century. European covenants, such as the Venice Charter, express shared views on the conservation and restoration of built heritage. Today, many users expect a building with modern comfort as well as a historical appearance. Moreover, new functionality is needed for building types that have outlived their original function. For example, how to reuse buildings such as old prisons, military barracks, factories, or railway stations? These new functions and new demands pose a challenge to restoration design and practices. Another, perhaps conflicting EU policy objective is the reduction of energy use in the built environment, in order to reach climate policy goals. Roughly 40% of the consumption of energy takes place in buildings, either in the production or consumption phase. However, energy efficiency is especially difficult to achieve in the case of historical buildings, because of strict regulations aimed at protecting historical values. Recently, there has been growing interest in energy efficient restoration practices in the Netherlands, as is shown by the 'energy-neutral' restoration of Villa Diederichs in Utrecht, the 'Boostencomplex' in Maastricht and De Tempel in The Hague. Although restoration of listed buildings is obviously focused on the preservation of historical values, with the pressing demands from EU climate policy the energy efficiency of historical building
MULTIFILE
Videoverslag waarin de aanpak, maatschappelijke relevantie en belangrijkste uitkomsten van het RAAK Onderzoek 'Making GREEN Energy Sources Greener' worden besproken. In dit onderzoek is op verschillende drijvende zonneparken gekeken naar effecten van de installaties op waterkwaliteit en ecologie. De resultaten hiervan vormen aanleiding voor vervolgonderzoeken die inmiddels zijn gestart
YOUTUBE
Dealing with and maintaining high-quality standards in the design and construction phases is challenging, especially for on-site construction. Issues like improper implementation of building components and poor communication can widen the gap between design specifications and actual conditions. To prevent this, particularly for energy-efficient buildings, it is vital to develop resilient, sustainable strategies. These should optimize resource use, minimize environmental impact, and enhance livability, contributing to carbon neutrality by 2050 and climate change mitigation. Traditional post-occupancy evaluations, which identify defects after construction, are impractical for addressing energy performance gaps. A new, real-time inspection approach is necessary throughout the construction process. This paper suggests an innovative guideline for prefabricated buildings, emphasizing digital ‘self-instruction’ and ‘self-inspection’. These procedures ensure activities impacting quality adhere to specific instructions, drawings, and 3D models, incorporating the relevant acceptance criteria to verify completion. This methodology, promoting alignment with planned energy-efficient features, is supported by BIM-based software and Augmented Reality (AR) tools, embodying Industry 4.0 principles. BIM (Building Information Modeling) and AR bridge the gap between virtual design and actual construction, improving stakeholder communication and enabling real-time monitoring and adjustments. This integration fosters accuracy and efficiency, which are key for energy-efficient and nearly zero-energy buildings, marking a shift towards a more precise, collaborative, and environmentally sensible construction industry.
DOCUMENT
Uit het rapport: "Deze onderzoeksagenda is tot stand gebracht door de lectoren die samenwerken in het Nationaal Lectoren Platform Urban Energy. Alle betrokkenen bij het platform zijn in staat gesteld om bij te dragen aan de tekst, speciale dank daarbij voor de bijdragen en commentaren vanuit de TKI Urban Energy en de HCA topsector Energie."
DOCUMENT
The built environment requires energy-flexible buildings to reduce energy peak loads and to maximize the use of (decentralized) renewable energy sources. The challenge is to arrive at smart control strategies that respond to the increasing variations in both the energy demand as well as the variable energy supply. This enables grid integration in existing energy networks with limited capacity and maximises use of decentralized sustainable generation. Buildings can play a key role in the optimization of the grid capacity by applying demand-side management control. To adjust the grid energy demand profile of a building without compromising the user requirements, the building should acquire some energy flexibility capacity. The main ambition of the Brains for Buildings Work Package 2 is to develop smart control strategies that use the operational flexibility of non-residential buildings to minimize energy costs, reduce emissions and avoid spikes in power network load, without compromising comfort levels. To realise this ambition the following key components will be developed within the B4B WP2: (A) Development of open-source HVAC and electric services models, (B) development of energy demand prediction models and (C) development of flexibility management control models. This report describes the developed first two key components, (A) and (B). This report presents different prediction models covering various building components. The models are from three different types: white box models, grey-box models, and black-box models. Each model developed is presented in a different chapter. The chapters start with the goal of the prediction model, followed by the description of the model and the results obtained when applied to a case study. The models developed are two approaches based on white box models (1) White box models based on Modelica libraries for energy prediction of a building and its components and (2) Hybrid predictive digital twin based on white box building models to predict the dynamic energy response of the building and its components. (3) Using CO₂ monitoring data to derive either ventilation flow rate or occupancy. (4) Prediction of the heating demand of a building. (5) Feedforward neural network model to predict the building energy usage and its uncertainty. (6) Prediction of PV solar production. The first model aims to predict the energy use and energy production pattern of different building configurations with open-source software, OpenModelica, and open-source libraries, IBPSA libraries. The white-box model simulation results are used to produce design and control advice for increasing the building energy flexibility. The use of the libraries for making a model has first been tested in a simple residential unit, and now is being tested in a non-residential unit, the Haagse Hogeschool building. The lessons learned show that it is possible to model a building by making use of a combination of libraries, however the development of the model is very time consuming. The test also highlighted the need for defining standard scenarios to test the energy flexibility and the need for a practical visualization if the simulation results are to be used to give advice about potential increase of the energy flexibility. The goal of the hybrid model, which is based on a white based model for the building and systems and a data driven model for user behaviour, is to predict the energy demand and energy supply of a building. The model's application focuses on the use case of the TNO building at Stieltjesweg in Delft during a summer period, with a specific emphasis on cooling demand. Preliminary analysis shows that the monitoring results of the building behaviour is in line with the simulation results. Currently, development is in progress to improve the model predictions by including the solar shading from surrounding buildings, models of automatic shading devices, and model calibration including the energy use of the chiller. The goal of the third model is to derive recent and current ventilation flow rate over time based on monitoring data on CO₂ concentration and occupancy, as well as deriving recent and current occupancy over time, based on monitoring data on CO₂ concentration and ventilation flow rate. The grey-box model used is based on the GEKKO python tool. The model was tested with the data of 6 Windesheim University of Applied Sciences office rooms. The model had low precision deriving the ventilation flow rate, especially at low CO2 concentration rates. The model had a good precision deriving occupancy from CO₂ concentration and ventilation flow rate. Further research is needed to determine if these findings apply in different situations, such as meeting spaces and classrooms. The goal of the fourth chapter is to compare the working of a simplified white box model and black-box model to predict the heating energy use of a building. The aim is to integrate these prediction models in the energy management system of SME buildings. The two models have been tested with data from a residential unit since at the time of the analysis the data of a SME building was not available. The prediction models developed have a low accuracy and in their current form cannot be integrated in an energy management system. In general, black-box model prediction obtained a higher accuracy than the white box model. The goal of the fifth model is to predict the energy use in a building using a black-box model and measure the uncertainty in the prediction. The black-box model is based on a feed-forward neural network. The model has been tested with the data of two buildings: educational and commercial buildings. The strength of the model is in the ensemble prediction and the realization that uncertainty is intrinsically present in the data as an absolute deviation. Using a rolling window technique, the model can predict energy use and uncertainty, incorporating possible building-use changes. The testing in two different cases demonstrates the applicability of the model for different types of buildings. The goal of the sixth and last model developed is to predict the energy production of PV panels in a building with the use of a black-box model. The choice for developing the model of the PV panels is based on the analysis of the main contributors of the peak energy demand and peak energy delivery in the case of the DWA office building. On a fault free test set, the model meets the requirements for a calibrated model according to the FEMP and ASHRAE criteria for the error metrics. According to the IPMVP criteria the model should be improved further. The results of the performance metrics agree in range with values as found in literature. For accurate peak prediction a year of training data is recommended in the given approach without lagged variables. This report presents the results and lessons learned from implementing white-box, grey-box and black-box models to predict energy use and energy production of buildings or of variables directly related to them. Each of the models has its advantages and disadvantages. Further research in this line is needed to develop the potential of this approach.
DOCUMENT
Uit de samenvatting: "Sinds medio 2017 is het Nationaal Lectorenplatform Urban Energy actief. De betrokken lectoren beogen het praktijkgericht onderzoek rond de gebouwde omgeving op hogescholen te verbinden en te stroomlijnen. Dit doen ze teneinde bij te dragen aan de energietransitie: met duurzame bronnen voorzien in onze energievoorziening. Een belangrijk instrument om de expertise van de lectoren te delen is een digitale onderzoekskaart, die beschikbaar is via: http://www.nlurbanenergy.nl. Daarnaast is er behoefte aan meer inzicht als het gaat om termen als vraagarticulatie en onderzoekssamenwerking. Meer precies wilden we achterhalen wat de behoefte is van het mkb aan praktijkgericht onderzoek van hogescholen in het domein Urban Energy. Daartoe hebben we een verkennende studie uitgevoerd naar praktijkgericht onderzoek binnen het domein Urban Energy. Hiervoor interviewden we de betrokken lectoren en ondernemers uit het innovatief MKB. Daarnaast maakten we gebruik van een enquête die we via verschillende kanalen onder de aandacht brachten bij het innovatief mkb."
DOCUMENT
The paper briefly describes the outcome of an approach to inventory of the current situation, inventory user demands and suggestions to improve energy efficiency and thermal comfort in Borgers' church.
DOCUMENT
Global awareness on energy consumption and the environmental impacts of fossil fuels boost actions and create more supportive policies towards sustainable energy systems, in the last energy outlook, by the International Energy Agency, it was forecasted totals of 3600 GW from 2016 to 2040 of global deployment of renewables sources (RES), covering 37% of the power generation. While the Natural Gas overtake the coal demand in the energy mix, growing around 50%, manly by more efficiency system and the use of LNG for long-distance gas trades. The energy infrastructure will be more integrated, deploying decentralized and Hybrid Energy Networks (HEN).This transformation on the energy mix leads to new challenges for the energy system, related to the uncertainty and variability of RES, such as: Balancing flexibility, it means having sufficient resources to accommodate when variable production increase and load levels fall (or vice versa). And Efficiency in traditional fired plants, the often turn on and off or modify their output levels to accommodate changes in variable demand, can result in a decrease in efficiency, particularly from thermal stresses on equipment. This paper focus in the possibility to offer balancing resources from the LNG regasification, while ensure an efficient system.In order to asses this issue, using the energy Hub concept a model of a distributed HEN was developed. The HEN consist in a Waste to Energy plant (W2E), a more sustainable case of Combine Heat and Power (CHP) coupled with a LNG cold recovery regasification. To guarantee a most efficiency operation, the HEN was optimized to minimized the Exergy efficiency, additionally, the system is constrained by meeting Supply with variable demand, putting on evidence the sources of balancing flexibility. The case study show, the coupled system increases in overall exergy efficiency from 25% to 35% compared to uncoupled system; it brings additional energy between 1.75 and 3 MW, and it meets variable demand in the most exergy efficient with power from LNG reducing inputs of other energy carriers. All this indicated that LNG cold recovery in regasification coupled other energy systems is as promising tool to support the transition towards sustainable energy systems.
DOCUMENT
Energy efficiency has gained a lot of prominence in recent debates on urban sustainability and housing policy due to its potential consequences for climate change. At the local, national and also international level, there are numerous initiatives to promote energy savings and the use of renewable energy to reduce the environmental burden. There is a lot of literature on energy saving and other forms of energy efficiency in housing. However, how to bring this forward in the management of individual housing organisations is not often internationally explored. An international research project has been carried out to find the answers on management questions of housing organisations regarding energy efficiency. Eleven countries have been included in this study: Germany, the United Kingdom (more specifically: England), France, Sweden, Denmark, the Netherlands, Switzerland, Slovenia, the Czech Republic, Austria and Canada. The state of the art of energy efficiency in the housing management of non-profit housing organisations and the embedding of energy efficiency to improve the quality and performance of housing in management practices have been investigated, with a focus on how policy ambitions about energy efficiency are brought forward in investment decisions at the estate level. This paper presents the conclusions of the research
DOCUMENT