Although there is an array of technical solutions available for retrofitting the building stock, the uptake of these by owner‐occupants in home improvement activities is lagging. Energy performance improvement is not included in maintenance, redecoration, and/or upgrading activities on a scale necessary to achieve the CO2 reduction aimed for in the built environment. Owner‐occupants usually adapt their homes in response to everyday concerns, such as having enough space available, increasing comfort levels, or adjusting arrangements to future‐proof their living conditions. Home energy improvements should be offered accordingly. Retrofit providers typically offer energy efficiency strategies and/or options for renewable energy generation only and tend to gloss over home comfort and homemaking as key considerations in decision‐making for home energy improvement. In fact, retrofit providers struggle with the tension between customisation requirements from private homeowners and demand aggregation to streamline their supply chains and upscale their retrofit projects. Customer satisfaction is studied in three different Dutch approaches to retrofit owner‐occupied dwellings to increase energy efficiency. For the analysis, a customer satisfaction framework is used that makes a distinction between satisfiers, dissatisfiers, criticals, and neutrals. This framework makes it possible to identify and structure different relevant factors from the perspective of owner‐occupants, allows visualising gaps with the professional perspective, and can assist to improve current propositions.
MULTIFILE
Energy poverty is a growing concern in the Netherlands due to the rising gas and electricity prices. There are three main contributors to energy poverty: low income, high fuel costs and energy inefficient homes. Energy poverty effects can have significant consequences, influencing both physical and mental health, increasing the chances of becoming trapped in a cycle of poverty and social isolation. Usually, policy making approaches to combat energy poverty mainly focus on financial support on a household scale or on prices regulating efforts. However, this study argues that actions on a community level could also contribute to alleviating the impacts that energy poverty has on citizens’ lives. For example, community centers in low-income neighborhoods could potentially play a catalyst role in alleviating the effects of energy poverty by exemplifying energy saving techniques, catering to the needs of residents, increasing social cohesion and inspiring collective action. This research explores strategic design interventions through a whole system’s lens; social, energy and nature, that can be applied to the new VanHouten community center in the Oosterpark district of Groningen, the Netherlands. This is a historic, former school building, under a restoration and reuse process, owned by the municipality. Literature reviews, participatory events and interviews have been used to explore the possibilities to mitigate energy poverty, within a research by design process. Beyond the local case, the findings lay the groundwork for more systematic studies on how to alleviate the impact of energy poverty on a community level.
Even though mango productivity in Ethiopia is low due to moisture stress, there is no report on how such constraint could alleviate using Cocoon water-saving technology. Cocoon is small water reservoir technology which uses for plant growth in dry season. The objectives of this study were to introduce and evaluate effectiveness of water-saving techniques on mango seedlings survival and growth in Mihitsab-Azmati watershed, northern Ethiopia. In this experiment, five treatments of water-saving techniques with mango seedlings were evaluated. These were: Cocoon sprayed by tricel (T1), Cocoon painted by used engine oil (T2), Cocoon without tricel and oil (T3), manually irrigated seedlings (T4) and mango seedlings planted during rainy season (T5). The survival and growth performance of mango seedlings were recorded at six months and one-year after transplanting. Data on plant survival, height, number of leaves per plant, shoot length, stem diameter and crown width were subjected to analysis of variance and t-test. There were significant differences in the treatment effects on mango seedlings transplanted survival, plant height, number of leaves per plant, shoot length, stem diameter and crown width measured at six months and one-year after transplanting. The lowest survival rate (20 %) was found during both data collection time in T5. Six months after transplanting, the highest growth parameters were measured from T1 whereas the lowest was from T5. However, one-year after transplanting, the highest growth parameters were measured from T3. Plant heights increments between the two measurement periods for T3, T2, T1, T4 and T5 were 45.1, 38.5, 24.8, 9.8 and 7.0 cm, respectively; indicating that T3 performed better than the other treatments. The t-test on mean differences between the same growth parameter measured at 12 and six months after transplanting also showed significant differences. The Cocoon water-saving technology was superior in improving mango seedlings survival and growth in the study area. This study generalized that Cocoon seems promising, sustainable and highly scalable with mango seedlings at large-scale in the study area conditions. However, this technology should not be assumed to perform uniformly well in all environmental conditions and with all tree species before demonstrated on a pilot study.
MULTIFILE
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Client: Blue Plan regional activity centre (UNEP/MAP), subcontracted through TEC Conseille, Marseille As part of a regional workshop organized by the Blue Plan in July 2008, one of the conclusions of the Group "Tourism and Climate Change” was the need for saving energy in tourism transportation and particularly of air transport, as air transport is responsible for the largest share of greenhouse gas emissions caused by tourism. In the period 1998-2005, the share of international arrivals by air in the Mediterranean area rose from 23% to 40%, respectively, or in numbers, from 47 to 122 million tourists. Some countries, particularly islands, almost entirely depend on air transport for their international tourism. For example in 2005 air transport is used by 87%, 78%, 73%, 64% and 51% of international tourists arriving in, respectively, Israel, Egypt, Spain, Tunisia and Morocco. According to Plan Bleu forecasts on international arrivals, assuming that the share of air transport remains the same, the number of tourists travelling by plane will reach over 158 million by 2025. Given the role of aviation in the emissions of greenhouse gases (GHG), such a development is clearly not sustainable in the light of the necessary reduction of emissions to avoid dangerous climate change. The overall aim of the study is to inform policy makers and entrepreneurs in both destination and in origin countries, on possible options to reduce emissions of greenhouse gases from air travel, while at the same time not impairing the economic development of tourism. To do this, CSTT has developed a tourism scenario model for all countries with Mediterranean coasts describing inbound and outbound international tourism and domestic tourism by all available transport modes and giving both contributions to GDP and total GHG emissions. This model responses to global mitigation policies (increasing the cost of carbon emissions) as well as national policies (taxes, subsidies and changes in transport quality per transport mode). Using the model both global and national policies can be assessed as well as the risks of global mitigation policies for specific countries.
Membrane downstream processing (DSP) offers many opportunities to make process water purification, food supplement concentration and fatty acid hydrogenations more sustainable. Zuyd University of Applied Sciences (ZUYD)/Center of Expertise (CoE) CHemelot Innovation and Learning Labs (CHILL) and Utrecht University of Applied Sciences (HU)/ Utrecht Science Park Innovation Lab (I-Lab) will extend their current field labs with (reactor-)membrane set-ups to assist small- and medium-sized enterprises (SMEs) with implementation and dissemination of membrane DSP. Experimental and theoretical scale-up will quantify the membrane DSP contribution to the transition of the chemical industry to become climate neutral. The MEM4CHEM consortium spans the chemical and high tech equipment (HTE) sectors and covers all aspects related to hardware, i.e. reactors, membranes and gas/liquid streams, to implement sustainable innovations for chemical end users. The membrane DSP field labs will be disseminated to extend the research network. In MEM4CHEM the overarching question: How can we implement (reactor-)membrane DSP set-ups in chemical process innovation and disseminate their advantages? and research question: How far can energy/material savings be increased in chemical processes by the use of membrane DSP? will be answered by: i) extending field labs with modular plug-and-play (reactor-)membrane set-ups tailored for the chemical process industry. ii) establishing guidelines for further optimization/upscaling. iii) quantifying energy and material savings using membrane DSP. iv) speeding up industrial implementation of membrane DSP by dissemination, research network expansion, integration of membrane knowledge in education and establishing young professionals as knowledgeable ambassadors. SMEs will be supported by: a) dissemination of the advantages of membrane DSP high tech equipment to facilitate implementation. b) the possibility for SME end users to quantify energy- and material savings in accessible field labs.