Dealing with and maintaining high-quality standards in the design and construction phases is challenging, especially for on-site construction. Issues like improper implementation of building components and poor communication can widen the gap between design specifications and actual conditions. To prevent this, particularly for energy-efficient buildings, it is vital to develop resilient, sustainable strategies. These should optimize resource use, minimize environmental impact, and enhance livability, contributing to carbon neutrality by 2050 and climate change mitigation. Traditional post-occupancy evaluations, which identify defects after construction, are impractical for addressing energy performance gaps. A new, real-time inspection approach is necessary throughout the construction process. This paper suggests an innovative guideline for prefabricated buildings, emphasizing digital ‘self-instruction’ and ‘self-inspection’. These procedures ensure activities impacting quality adhere to specific instructions, drawings, and 3D models, incorporating the relevant acceptance criteria to verify completion. This methodology, promoting alignment with planned energy-efficient features, is supported by BIM-based software and Augmented Reality (AR) tools, embodying Industry 4.0 principles. BIM (Building Information Modeling) and AR bridge the gap between virtual design and actual construction, improving stakeholder communication and enabling real-time monitoring and adjustments. This integration fosters accuracy and efficiency, which are key for energy-efficient and nearly zero-energy buildings, marking a shift towards a more precise, collaborative, and environmentally sensible construction industry.
DOCUMENT
The conservation of our heritage buildings is a European wide policy objective. Historical buildings are not only works of art, but embody an important source of local identity and form a connection to our past. Protection agencies aim to preserve historical qualities for future generations. Their work is guided by restoration theory, a philosophy developed and codified in the course of the 19th and 20th century. European covenants, such as the Venice Charter, express shared views on the conservation and restoration of built heritage. Today, many users expect a building with modern comfort as well as a historical appearance. Moreover, new functionality is needed for building types that have outlived their original function. For example, how to reuse buildings such as old prisons, military barracks, factories, or railway stations? These new functions and new demands pose a challenge to restoration design and practices. Another, perhaps conflicting EU policy objective is the reduction of energy use in the built environment, in order to reach climate policy goals. Roughly 40% of the consumption of energy takes place in buildings, either in the production or consumption phase. However, energy efficiency is especially difficult to achieve in the case of historical buildings, because of strict regulations aimed at protecting historical values. Recently, there has been growing interest in energy efficient restoration practices in the Netherlands, as is shown by the 'energy-neutral' restoration of Villa Diederichs in Utrecht, the 'Boostencomplex' in Maastricht and De Tempel in The Hague. Although restoration of listed buildings is obviously focused on the preservation of historical values, with the pressing demands from EU climate policy the energy efficiency of historical building
MULTIFILE
Designs for improving energy efficiency in historical buildings are tailor made. For initiators the flexible character of design processes raises uncertainty about why certain energy measures are (not) allowed. How is decision making in thedesign process organised? And what mechanisms influence tailor made designs? In this paper we present an integral design method for energy efficient restoration. Our theoretical background draws on two sources. Firstly, we follow design theory with distinct generic and specific designs. Secondly we use the ‘heritage-as-a-spatial-factor’ approach, where participants with different backgrounds focus on adding value to heritage. By applying the integral design method, we evaluate decision making processes and reflect on heritage approaches. We suggest how the integral design method can be improved andquestion the parallel existence of heritage approaches.
DOCUMENT
B4B is a multi-year, multi-stakeholder project focused on developing methods to harness big data from smart meters, building management systems and the Internet of Things devices, to reduce energy consumption, increase comfort, respond flexibly to user behaviour and local energy supply and demand, and save on installation maintenance costs. This will be done through the development of faster and more efficient Machine Learning and Artificial Intelligence models and algorithms. The project is geared to existing utility buildings such as commercial and institutional buildings.
DOCUMENT
The ambition of a transition to a sustainable society brings forth the dual challenge to preserve historical buildings and simultaneously improve the energy performance of our built environment. While engineers claim that a dramatic reduction of energy use in the built environment is feasible, it has proven to be a difficult and twisting road.In this paper we focus on historical buildings, where difficulties of energy reduction are paramount, as such buildings provide local identity and a connection to our past. It is a EU policy objective to conserve and redesign heritage buildings like prisons, military barracks, factories, stations, and schools. Such redesign should also ensure reduction of energy use without compromising historical identity. In this paper we conceptually and empirically investigate how the two conflicting aspirations unfold. In particular we elaborate the obduracy and scripts of buildings, to clarify how they resist change and invite a specific use. We analyse the tensions between identity and energy conservation in a case study of a restoration project in Franeker. This buildinghas recently undergone a restoration, with energy efficiency as one of its goals.Scripts and networks are traced by a combination of methods, such as studyinglayout, materials and building history, and qualitative interviews with restoration architects and users. We identified three types of strategies to conserve identity and energy: design strategies; identity strategies and network strategies. Such strategies are also relevant for other efforts where conservation and innovation have to be reconciled.
DOCUMENT
The actual non-sustainable way of living has to be changed fundamentally. Despite all efforts to create a better environment, to improve building designs and to ameliorate existing buildings, often contradictory factors are faced which make it difficult to decide what the best solutions are.The discussion around the Expanded Polystyrene (EPS) house insulation is a typical example how complicated the relation between, energy efficiency, human comfort and health can be. Clearly positive effects like energy efficiency are sometimes associated with e.g. potential flaws in aesthetics caused by growth of algae, poor indoor climate, and health risks which can result in negative responses of residents when implementation of these measures is proposed. Therefore often substances are added which may cause implications with existing regulations if reused again. Smart and highly efficient products are often in contradiction with our aims to create a circular economy due to the fact that different materials are often treated with chemicals or put together in infrangible combinations. The aim of this paper is to highlight the balancing act being faced when trying to introduce new more sustainable materials and methods into the building process. Based on some examples the paper want to demonstrate that principally good intentions like improved energy savings can cause problems in other fields like environmental impact or limited re-use in a circular economy. Basic problems are described and potential approaches to minimize the risk of using building materials which might not meet the requirements for reuse in a second use phase are suggested.
DOCUMENT
Author supplied: Within the Netherlands the interest for sustainability is slowly growing. However, most organizations are still lagging behind in implementing sustainability as part of their strategy and in developing performance indicators to track their progress; not only in profit organizations but in higher education as well, even though sustainability has been on the agenda of the higher educational sector since the 1992 Earth Summit in Rio, progress is slow. Currently most initiatives in higher education in the Netherlands have been made in the greening of IT (e.g. more energy efficient hardware) and in implementing sustainability as a competence in curricula. However if we look at the operations (the day to day processes and activities) of Dutch institutions for higher education we just see minor advances. In order to determine what the best practices are in implementing sustainable processes, We have done research in the Netherlands and based on the results we have developed a framework for the smart campus of tomorrow. The research approach consisted of a literature study, interviews with experts on sustainability (both in higher education and in other sectors), and in an expert workshop. Based on our research we propose the concept of a Smart Green Campus that integrates new models of learning, smart sharing of resources and the use of buildings and transport (in relation to different forms of education and energy efficiency). Flipping‐the‐classroom, blended learning, e‐learning and web lectures are part of the new models of learning that should enable a more time and place independent form of education. With regard to smart sharing of resources we have found best practices on sharing IT‐storage capacity among universities, making educational resources freely available, sharing of information on classroom availability and possibilities of traveling together. A Smart Green Campus is (or at least is trying to be) energy neutral and therefore has an energy building management system that continuously monitors the energy performance of buildings on the campus. And the design of the interior of the buildings is better suited to the new forms of education and learning described above. The integrated concept of Smart Green Campus enables less travel to and from the campus. This is important as in the Netherlands about 60% of the CO2 footprint of a higher educational institute is related to mobility. Furthermore we advise that the campus is in itself an object for study by students and researchers and sustainability should be made an integral part of the attitude of all stakeholders related to the Smart Green Campus. The Smart Green Campus concept provides a blueprint that Dutch institutions in higher education can use in developing their own sustainability strategy. Best practices are shared and can be implemented across different institutions thereby realizing not only a more sustainable environment but also changing the attitude that students (the professionals of tomorrow) and staff have towards sustainability.
DOCUMENT
Paper which introduces an method developed by the research group Duurzame Projectontwikkeling of the SIA-RAAK project Energieke Restauratie. Besides an discription of the method, it also describes the application of the method for three (fictional) case study projects: Dairy Factory Dongeradelen (Lioessens), Strawboard Factory Free (Oude Pekela) and Der Aa church (Groningen).
DOCUMENT
High level circular use of post-consumer insulating glass units will contribute to lower the environmental and social impact of insulation glass industry. The application of various circular strategies for insulating glass units (IGU’s) is rising. The product age will give an indication of the remaining life-time of an IGU, but a method which includes screening a technical quality is needed to check if an IGU is indeed suitable for re-use on a high level of circularity. In this study the argon concentration is suggested as discriminative quality. Energy efficient double glazing applied in windows of buildings situated in The Netherlands were studied. Product codes were noted and unraveled. Measurements were performed using the Sparklike Laser Portable, a non-invasive argon measuring device, which generates argon concentration, glass thickness and cavity width values. In addition, measurements were performed with a Glass Check thickness meter. The resulting data were analyzed. Measuring errors were explored and used to setup a testing procedure. Threshold values of the product age and argon concentration were selected for different circular strategies. In conclusion, a screening method using the product age and argon concentration to determine the circular use potential of insulating glass units is proposed.
MULTIFILE
Ending subsidies for fossil fuel heating systems from 2025, and phasing out gas boilers and other fossil fuel heaters by 2040. These are just two of the outcomes of a political agreement between the EU Council and the European Parliament, which was reached on December 7, 2023. Which measures were agreed upon, and what will the implications be for the heating sector?
MULTIFILE