Knowledge of the time of deposition is pivotal in forensic investigations. Recent studies show that changes in intrinsic fluorescence over time can be used to estimate the age of body fluids. These changes have been attributed to oxidative modifications caused by protein–lipid interactions. This pilot study aims to explore the impact of these modifications on body fluid fluorescence, enhancing the protein–lipid model system for age estimation. Lipid and protein oxidation markers, including protein carbonyls, dityrosine, advanced glycation end-products (AGEs), malondialdehyde (MDA), and 4-hydroxynonenal (HNE), were studied in aging semen, urine, and saliva over 21 days. Surface plasmon resonance imaging (SPRi), enzyme-linked immunosorbent assay (ELISA), and fluorescence spectroscopy were applied. Successful detection of AGE, dityrosine, MDA, and HNE occurred in semen and saliva via SPRi, while only dityrosine was detected in urine. Protein carbonyls were measured in all body fluids, but only in saliva was a significant increase observed over time. Additionally, protein fluorescence loss and fluorescent oxidation product formation were assessed, showing significant decreases in semen and saliva, but not in urine. Although optimization is needed for accurate quantification, this study reveals detectable markers for protein and lipid oxidation in aging body fluids, warranting further investigation.
MULTIFILE
An ELISA was set up using polyvinylchloride microtiter plates coated with rabbit anti-UK IgG's and affino-purified goat anti-UK IgG's as second antibody. Detection occurred with rabbit anti-goat IgG antibodies conjugated with alkaline phosphatase. The assay is specific for urokinase (UK) with a detection limit of 100 pg/ml sample. Tissue-type plasminogen activator, up to concentrations of 100 ng/ml, does not interfere. The assay measures the antigen of the inactive zymogen pro-UK, the active enzyme UK and the UK-inhibitor complex with equal efficiency and gives the total UK antigen present, irrespective of its molecular form. Culture media of fibroblasts, endothelial- and kidney cells showed, despite the absence of active UK, antigen levels of 1.2, 23 and 65 ng/ml, respectively. In human plasma the UK concentration was found to be 3.5 +/- 1.4 ng/ml (mean +/- SD, n = 54). The inter- and intra-assay variations were 20% and 6%, respectively.
DOCUMENT
Author supplied: "Six commercial peanut enzyme-linked immunosorbent assay kits were assessed for their ability to recover peanut from the standard reference material 2387 peanut butter and also for their specificity in detecting four major peanut allergens, Ara h 1, Ara h 2, Ara h 3, and Ara h 6. The percentage recovery of peanut from peanut butter differed across different kits as well as at different sample concentrations. The highest recovery was observed with the Romer and R-Biopharm kits, while four other kits were found to underestimate the protein content of the reference peanut butter samples. Five of the kits were most sensitive in detecting Ara h 3 followed by Ara h 1, while hardly recognizing Ara h 2 and Ara h 6. The other kit showed the highest sensitivity to Ara h 2 and Ara h 6, while Ara h 1 and Ara h 3 were poorly recognized. Although Ara h 2 and Ara h 6 are known to be heat stable and more potent allergens, antisera specific to any of these four peanut proteins/allergens may serve as good markers for the detection of peanut residues."
LINK