Aim: To evaluate healthcare professionals' performance and treatment fidelity in the Cardiac Care Bridge (CCB) nurse-coordinated transitional care intervention in older cardiac patients to understand and interpret the study results. Design: A mixed-methods process evaluation based on the Medical Research Council Process Evaluation framework. Methods: Quantitative data on intervention key elements were collected from 153 logbooks of all intervention patients. Qualitative data were collected using semi-structured interviews with 19 CCB professionals (cardiac nurses, community nurses and primary care physical therapists), from June 2017 until October 2018. Qualitative data-analysis is based on thematic analysis and integrated with quantitative key element outcomes. The analysis was blinded to trial outcomes. Fidelity was defined as the level of intervention adherence. Results: The overall intervention fidelity was 67%, ranging from severely low fidelity in the consultation of in-hospital geriatric teams (17%) to maximum fidelity in the comprehensive geriatric assessment (100%). Main themes of influence in the intervention performance that emerged from the interviews are interdisciplinary collaboration, organizational preconditions, confidence in the programme, time management and patient characteristics. In addition to practical issues, the patient's frailty status and limited motivation were barriers to the intervention. Conclusion: Although involved healthcare professionals expressed their confidence in the intervention, the fidelity rate was suboptimal. This could have influenced the non-significant effect of the CCB intervention on the primary composite outcome of readmission and mortality 6 months after randomization. Feasibility of intervention key elements should be reconsidered in relation to experienced barriers and the population. Impact: In addition to insight in effectiveness, insight in intervention fidelity and performance is necessary to understand the mechanism of impact. This study demonstrates that the suboptimal fidelity was subject to a complex interplay of organizational, professionals' and patients' issues. The results support intervention redesign and inform future development of transitional care interventions in older cardiac patients.
DOCUMENT
Living labs are complex multi-stakeholder collaborations that often employ a usercentred and design-driven methodology to foster innovation. Conventional management tools fall short in evaluating them. However, some methods and tools dedicated to living labs' special characteristics and goals have already been developed. Most of them are still in their testing phase. Those tools are not easily accessible and can only be found in extensive research reports, which are difficult to dissect. Therefore, this paper reviews seven evaluation methods and tools specially developed for living labs. Each section of this paper is structured in the following manner: tool’s introduction (1), who uses the tool (2), and how it should be used (3). While the first set of tools, namely “ENoLL 20 Indicators”, “SISCODE Self-assessment”, and “SCIROCCO Exchange Tool” assess a living lab as an organisation and are diving deeper into the organisational activities and the complex context, the second set of methods and tools, “FormIT” and “Living Lab Markers”, evaluate living labs’ methodologies: the process they use to come to innovations. The paper's final section presents “CheRRIes Monitoring and Evaluation Tool” and “TALIA Indicator for Benchmarking Service for Regions”, which assess the regional impact made by living labs. As every living lab is different regarding its maturity (as an organisation and in its methodology) and the scope of impact it wants to make, the most crucial decision when evaluating is to determine the focus of the assessment. This overview allows for a first orientation on worked-out methods and on possible indicators to use. It also concludes that the existing tools are quite managerial in their method and aesthetics and calls for designers and social scientists to develop more playful, engaging and (possibly) learning-oriented tools to evaluate living labs in the future. LinkedIn: https://www.linkedin.com/in/overdiek12345/ https://www.linkedin.com/in/mari-genova-17a727196/?originalSubdomain=nl
DOCUMENT
Sustainability is one of the most important challenges of our time. How can we develop prosperity without compromising the lives of future generations? Information technology (IT) and information systems (IS) provide organizations with the ability to change and improve business processes to better support sustainable practices. IT/IS evaluation methods should therefore reflect this ability and include criteria for the assessment of sustainability aspects of IT/IS projects. However, IT/IS evaluation methods are still dominated by the economical perspective that resulted from the infamous IT productivity paradox. This chapter aims to broaden the perspective on IT/IS evaluation by exploring the integration of indicators that reflect the concepts of sustainability into IT/IS evaluation methods. The analysis will conclude that integrating sustainability considerations in IT/IS evaluation requires far more than a set of additional criteria to be considered.
LINK
In order to achieve much-needed transitions in energy and health, systemic changes are required that are firmly based on the principles of regard for others and community values, while at the same time operating in market conditions. Social entrepreneurship and community entrepreneurship (SCE) hold the promise to catalyze such transitions, as they combine bottom-up social initiatives with a focus on financially viable business models. SCE requires a facilitating ecosystem in order to be able to fully realize its potential. As yet it is unclear in which way the entrepreneurial ecosystem for social and community entrepreneurship facilitates or hinders the flourishing and scaling of such entrepreneurship. It is also unclear how exactly entrepreneurs and stakeholders influence their ecosystem to become more facilitative. This research programme addresses these questions. Conceptually it integrates entrepreneurial ecosystem frameworks with upcoming theories on civic wealth creation, collaborative governance, participative learning and collective action frameworks.This multidisciplinary research project capitalizes on a unique consortium: the Dutch City Deal ‘Impact Ondernemen’. In this collaborative research, we enhance and expand current data collection efforts and adopt a living-lab setting centered on nine local and regional cases for collaborative learning through experimenting with innovative financial and business models. We develop meaningful, participatory design and evaluation methods and state-of-the-art digital tools to increase the effectiveness of impact measurement and management. Educational modules for professionals are developed to boost the abovementioned transition. The project’s learnings on mechanisms and processes can easily be adapted and translated to a broad range of impact areas.
Coastal nourishments, where sand from offshore is placed near or at the beach, are nowadays a key coastal protection method for narrow beaches and hinterlands worldwide. Recent sea level rise projections and the increasing involvement of multiple stakeholders in adaptation strategies have resulted in a desire for nourishment solutions that fit a larger geographical scale (O 10 km) and a longer time horizon (O decades). Dutch frontrunner pilot experiments such as the Sandmotor and Ameland inlet nourishment, as well as the Hondsbossche Dunes coastal reinforcement project have all been implemented from this perspective, with the specific aim to encompass solutions that fit in a renewed climate-resilient coastal protection strategy. By capitalizing on recent large-scale nourishments, the proposed Coastal landSCAPE project C-SCAPE will employ and advance the newly developed Dynamic Adaptive Policy Pathways (DAPP) approach to construct a sustainable long-term nourishment strategy in the face of an uncertain future, linking climate and landscape scales to benefits for nature and society. Novel long-term sandy solutions will be examined using this pathways method, identifying tipping points that may exist if distinct strategies are being continued. Crucial elements for the construction of adaptive pathways are 1) a clear view on the long-term feasibility of different nourishment alternatives, and 2) solid, science-based quantification methods for integral evaluation of the social, economic, morphological and ecological outcomes of various pathways. As currently both elements are lacking, we propose to erect a Living Lab for Climate Adaptation within the C-SCAPE project. In this Living Lab, specific attention is paid to the socio-economic implications of the nourished landscape, as we examine how morphological and ecological development of the large-scale nourishment strategies and their design choices (e.g. concentrated vs alongshore uniform, subaqueous vs subaerial, geomorphological features like artificial lagoons) translate to social acceptance.
In order to stay competitive and respond to the increasing demand for steady and predictable aircraft turnaround times, process optimization has been identified by Maintenance, Repair and Overhaul (MRO) SMEs in the aviation industry as their key element for innovation. Indeed, MRO SMEs have always been looking for options to organize their work as efficient as possible, which often resulted in applying lean business organization solutions. However, their aircraft maintenance processes stay characterized by unpredictable process times and material requirements. Lean business methodologies are unable to change this fact. This problem is often compensated by large buffers in terms of time, personnel and parts, leading to a relatively expensive and inefficient process. To tackle this problem of unpredictability, MRO SMEs want to explore the possibilities of data mining: the exploration and analysis of large quantities of their own historical maintenance data, with the meaning of discovering useful knowledge from seemingly unrelated data. Ideally, it will help predict failures in the maintenance process and thus better anticipate repair times and material requirements. With this, MRO SMEs face two challenges. First, the data they have available is often fragmented and non-transparent, while standardized data availability is a basic requirement for successful data analysis. Second, it is difficult to find meaningful patterns within these data sets because no operative system for data mining exists in the industry. This RAAK MKB project is initiated by the Aviation Academy of the Amsterdam University of Applied Sciences (Hogeschool van Amsterdan, hereinafter: HvA), in direct cooperation with the industry, to help MRO SMEs improve their maintenance process. Its main aim is to develop new knowledge of - and a method for - data mining. To do so, the current state of data presence within MRO SMEs is explored, mapped, categorized, cleaned and prepared. This will result in readable data sets that have predictive value for key elements of the maintenance process. Secondly, analysis principles are developed to interpret this data. These principles are translated into an easy-to-use data mining (IT)tool, helping MRO SMEs to predict their maintenance requirements in terms of costs and time, allowing them to adapt their maintenance process accordingly. In several case studies these products are tested and further improved. This is a resubmission of an earlier proposal dated October 2015 (3rd round) entitled ‘Data mining for MRO process optimization’ (number 2015-03-23M). We believe the merits of the proposal are substantial, and sufficient to be awarded a grant. The text of this submission is essentially unchanged from the previous proposal. Where text has been added – for clarification – this has been marked in yellow. Almost all of these new text parts are taken from our rebuttal (hoor en wederhoor), submitted in January 2016.