Introduction: Strenuous physical stress induces a range of physiological responses, the extent depending, among others, on the nature and severity of the exercise, a person’s training level and overall physical resilience. This principle can also be used in an experimental set-up by measuring time-dependent changes in biomarkers for physiological processes. In a previous report, we described the effects of workload delivered on a bicycle ergometer on intestinal functionality. As a follow-up, we here describe an analysis of the kinetics of various other biomarkers. Aim: To analyse the time-dependent changes of 34 markers for different metabolic and immunological processes, comparing four different exercise protocols and a rest protocol. Methods: After determining individual maximum workloads, 15 healthy male participants (20–35 years) started with a rest protocol and subsequently performed (in a cross-over design with 1-week wash-out) four exercise protocols of 1-h duration at different intensities: 70% Wmax in a hydrated and a mildly dehydrated state, 50% Wmax and intermittent 85/55% Wmax in blocks of 2 min. Perceived exertion was monitored using the Borg’ Rating of Perceived Exertion scale. Blood samples were collected both before and during exercise, and at various timepoints up to 24 h afterward. Data was analyzed using a multilevel mixed linear model with multiple test correction. Results: Kinetic changes of various biomarkers were exercise-intensity-dependent. Biomarkers included parameters indicative of metabolic activity (e.g., creatinine, bicarbonate), immunological and hematological functionality (e.g., leukocytes, hemoglobin) and intestinal physiology (citrulline, intestinal fatty acid-binding protein, and zonulin). In general, responses to high intensity exercise of 70% Wmax and intermittent exercise i.e., 55/85% Wmax were more pronounced compared to exercise at 50% Wmax. Conclusion: High (70 and 55/85% Wmax) and moderate (50% Wmax) intensity exercise in a bicycle ergometer test produce different time-dependent changes in a broad range of parameters indicative of metabolic activity, immunological and hematological functionality and intestinal physiology. These parameters may be considered biomarkers of homeostatic resilience. Mild dehydration intensifies these time-related changes. Moderate intensity exercise of 50% Wmax shows sufficient physiological and immunological responses and can be employed to test the health condition of less fit individuals.
DOCUMENT
Maintaining exercise behavior is crucial for cancer survivors, yet adherence to exercise recommendations remains low. This study explores the experiences and perspectives of community-working physical therapists and survivors of cancer regarding barriers and facilitators that support the maintenance of exercise behavior post-treatment.
MULTIFILE
Cardiovascular disease (CVD) morbidity and mortality is highly prevalent in patients with rheumatoid arthritis (RA) with debilitating effects for the individual as well as significant healthcare impact. Current evidence demonstrates that engaging in aerobic and resistance exercise (i.e. structured physical activity) can significantly improve patient-reported and clinical index-assessed outcomes in RA. In addition to this, engagement in exercise programmes improves, in a dose-dependent manner, the risk of developing CVD as well as CVD symptoms and outcomes. The present narrative review uses evidence from systematic reviews and meta-analyses as well as controlled trials, to synthesize the current state-of-the-art on the potential effects of aerobic and resistance exercise on CVD risk factors as well as on cardiac and vascular function and structure in people with RA. Where there is a lack of evidence in RA to explain potential mechanisms, relevant studies from the general population are also discussed and linked to RA.
DOCUMENT
Physiotherapists should take a primary role in relation to the prevention and management of all diseases that are associated with low levels of physical activity. The benefits of regular physical activity on health, longevity, and well being easily surpass the effectiveness of any drugs or other medical treatment. Physical activity has many beneficial effects on the body, helps prevent the development of many chronic diseases and is a useful complement to drug treatment in many diseases. As the importance of physical activity for health might well be underrated and undervalued even by manual therapists we describe the physiological consequences and health dangers of being inactive in this paper.
DOCUMENT
Aim: To investigate the effects of exercise on salivary concentrations of inflammatory markers by analyzing a panel of 25 inflammatory markers in subjects who had participated in bicycle ergometer tests varying in workload and hydration status. Methods: Fifteen healthy young men (20-35 years) had performed 4 different exercise protocols of 1 hour duration in a randomly assigned cross-over design, preceded by a rest protocol. Individual workloads depended on participant's pre-assessed individual maximum workload (Wmax): rest (protocol 1), 70% Wmax in hydrated (protocol 2) and dehydrated (protocol 3) state, 50% Wmax (protocol 4) and intermittent 85%/55% Wmax in 2 min blocks (protocol 5). Saliva samples were collected before (T0) and immediately after exercise (T1), and at several time points after exercise (2 hours (T3), 3 hours (T4), 6 hours (T5) and 24 hours (T6)). Secretory Leukocyte Protease Inhibitor (SLPI), Matrix Metallopeptidase-9 (MMP-9) and lactoferrin was analyzed using a commercial ELISA kit, a panel of 22 cytokines and chemokines were analyzed using a commercial multiplex immunoassay. Data was analyzed using a multilevel mixed linear model, with multiple test correction. Results: Among a panel of 25 inflammatory markers, SLPI concentrations were significantly elevated immediately after exercise in all protocols compared to rest and higher concentrations reflected the intensity of exercise and hydration status. MMP-9 showed a significant increase in the 70% Wmax dehydrated, 50% Wmax and intermittent protocols. Conclusions: Salivary concentrations of SLPI and MMP-9 seem associated with exercise intensity and hydration status and may offer non-invasive biomarkers to study (local) inflammatory responses to different exercise intensities in human studies. sa
DOCUMENT
Objective: To systematically review and critically appraise the literature on measurement properties of cardiopulmonary exercise test protocols for measuring aerobic capacity, VO2max, in persons after stroke. Data sources: PubMed, Embase and Cinahl were searched from inception up to 15 June 2016. A total of 9 studies were identified reporting on 9 different cardiopulmonary exercise test protocols. Study selection: VO2max measured with cardiopulmonary exercise test and open spirometry was the construct of interest. The target population was adult persons after stroke. We included all studies that evaluated reliability, measurement error, criterion validity, content validity, hypothesis testing and/ or responsiveness of cardiopulmonary exercise test protocols. Data extraction: Two researchers independently screened the literature, assessed methodological quality using the COnsensus-based Standards for the selection of health Measurement INstruments checklist and extracted data on measurement properties of cardiopulmonary exercise test protocols. Data synthesis: Most studies reported on only one measurement property. Best-evidence synthesis was derived taking into account the methodological quality of the studies, the results and the consistency of the results. Conclusion: No judgement could be made on which protocol is “best” for measuring VO2max in persons after stroke due to lack of high-quality studies on the measurement properties of the cardiopulmonary exercise test.
DOCUMENT
Rationale To improve the quality of exercise-based cardiac rehabilitation (CR) in patients with chronic heart failure (CHF) a practice guideline from the Dutch Royal Society for Physiotherapy (KNGF) has been developed. Guideline development A systematic literature search was performed to formulate conclusions on the efficacy of exercise-based intervention during all CR phases in patients with CHF. Evidence was graded (1–4) according the Dutch evidence-based guideline development criteria. Clinical and research recommendations Recommendations for exercise-based CR were formulated covering the following topics: mobilisation and treatment of pulmonary symptoms (if necessary) during the clinical phase, aerobic exercise, strength training (inspiratory muscle training and peripheral muscle training) and relaxation therapy during the outpatient CR phase, and adoption and monitoring training after outpatient CR. Applicability and implementation issues This guideline provides the physiotherapist with an evidence-based instrument to assist in clinical decision-making regarding patients with CHF. The implementation of the guideline in clinical practice needs further evaluation. Conclusion This guideline outlines best practice standards for physiotherapists concerning exercise-based CR in CHF patients. Research is needed on strategies to improve monitoring and follow-up of the maintenance of a physical active lifestyle after supervised CR.
DOCUMENT
The capacity to utilize ingested protein for optimal support of protein synthesis and lean body mass is described within the paradigm of anabolic competence. Protein synthesis can be stimulated by physical exercise, however, it is not known if physical exercise affects post-exercise protein oxidation. Characterization of the driving forces behind protein oxidation, such as exercise, can contribute to improved understanding of whole body protein metabolism. The purpose of this study is to determine the effect of two levels of aerobic exercise intensity on immediate post-exercise exogenous protein oxidation. Sixteen healthy males with a mean (SD) age of 24 (4) years participated. The subjects' VO2-max was estimated with the Åstrand cycling test. Habitual dietary intake was assessed with a three-day food diary. Exogenous protein oxidation was measured by isotope ratio mass spectrometry. These measurements were initiated after the ingestion of a 30 g 13C-milk protein test drink that was followed by 330 minutes breath sample collection. On three different days with at least one week in between, exogenous protein oxidation was measured: 1) during rest, 2) after 15 minutes of aerobic exercise at 30% of VO2-max (moderate intensity), and 3) after 15 minutes of aerobic exercise at 60% of VO2-max (vigorous intensity). After vigorous intensity aerobic exercise, 31.8%±8.0 of the 30 g 13C-milk protein was oxidized compared to 26.2%±7.1 during resting condition (p = 0.012), and 25.4%±7.6 after moderate intensity aerobic exercise compared to resting (p = 0.711). In conclusion, exogenous protein oxidation is increased after vigorous intensity aerobic exercise which could be the result of an increased protein turnover rate.
DOCUMENT
Exercise is one of the external factors associated with impairment of intestinal integrity, possibly leading to increased permeability and altered absorption. Here, we aimed to examine to what extent endurance exercise in the glycogen‐depleted state can affect intestinal permeability toward small molecules and protein‐derived peptides in relation to markers of intestinal function. Eleven well‐trained male volunteers (27 ± 4 years) ingested 40 g of casein protein and a lactulose/rhamnose (L/R) solution after an overnight fast in resting conditions (control) and after completing a dual – glycogen depletion and endurance – exercise protocol (first protocol execution). The entire procedure was repeated 1 week later (second protocol execution). Intestinal permeability was measured as L/R ratio in 5 h urine and 1 h plasma. Five‐hour urine excretion of betacasomorphin‐7 (BCM7), postprandial plasma amino acid levels, plasma fatty acid binding protein 2 (FABP‐2), serum pre‐haptoglobin 2 (preHP2), plasma glucagon‐like peptide 2 (GLP2), serum calprotectin, and dipeptidylpeptidase‐4 (DPP4) activity were studied as markers for excretion, intestinal functioning and recovery, inflammation, and BCM7 breakdown activity, respectively. BCM7 levels in urine were increased following the dual exercise protocol, in the first as well as the second protocol execution, whereas 1 h‐plasma L/R ratio was increased only following the first exercise protocol execution. FABP2, preHP2, and GLP2 were not changed after exercise, whereas calprotectin increased. Plasma citrulline levels following casein ingestion (iAUC) did not increase after exercise, as opposed to resting conditions. Endurance exercise in the glycogen depleted state resulted in a clear increase of BCM7 accumulation in urine, independent of DPP4 activity and intestinal permeability. Therefore, strenuous exercise could have an effect on the amount of food‐derived bioactive peptides crossing the epithelial barrier. The health consequence of increased passage needs more in depth studies.
DOCUMENT