Exergames, as one might infer from the name, are a combination of exercise and games. As such, they stimulate players to perform certain behaviours by providing them with engaging game mechanics (Whitehead, Johnston, Nixon, & Welch, 2010). While they can be used during physiotherapeutic rehabilitation sessions, they are particularly useful to increase therapy adherence at home (Song, Peng, & Lee, 2011). In this extended abstract, we explore an approach that addresses the first problem: how can we design a game that can be mapped on a wide range of therapeutic exercises?
DOCUMENT
Background Exergames are becoming an increasingly popular tool for training balance ability, thereby preventing falls in older adults. Automatic, real time, assessment of the user's balance control offers opportunities in terms of providing targeted feedback and dynamically adjusting the gameplay to the individual user, yet algorithms for quantification of balance control remain to be developed. The aim of the present study was to identify movement patterns, and variability therein, of young and older adults playing a custom-made weight-shifting (ice-skating) exergame. Methods Twenty older adults and twenty young adults played a weight-shifting exergame under five conditions of varying complexity, while multi-segmental whole-body movement data were captured using Kinect. Movement coordination patterns expressed during gameplay were identified using Self Organizing Maps (SOM), an artificial neural network, and variability in these patterns was quantified by computing Total Trajectory Variability (TTvar). Additionally a k Nearest Neighbor (kNN) classifier was trained to discriminate between young and older adults based on the SOM features. Results Results showed that TTvar was significantly higher in older adults than in young adults, when playing the exergame under complex task conditions. The kNN classifier showed a classification accuracy of 65.8%.Conclusions Older adults display more variable sway behavior than young adults, when playing the exergame under complex task conditions. The SOM features characterizing movement patterns expressed during exergaming allow for discriminating between young and older adults with limited accuracy. Our findings contribute to the development of algorithms for quantification of balance ability during home-based exergaming for balance training. Copyright:
DOCUMENT
Abstract: Sedentary behaviour in children, four years of age and older, has increased over the last decades. These children become physically less skilled, which demotivates them for regular sports activities. They become susceptible to health risks such as obesity and have a heightened chance to develop depression and a lower self-esteem. Sports professionals acknowledge that these children in time become unable to keep up with the sports education pace, leaving them prone to social exclusion as well.Exergames seem promising in their potential to increase the amount and quality of physical exercise in this group. Moreover, they offer strategies to motivate children to a more active and healthier lifestyle. However, some issues remain unclear regarding their applicability and individual fittingness. For one thing sports professionals have little to no experience using exergames in physical education, let alone understand which games could be appropriate to structurally activate said children. In addition, existing exergames regularly lack a suitable degree of adaptivity regarding what a child is physically capable of, which psychological needs should be addressed, and to what inactive children find appealing in terms of gameplay.The aim of our research project is to build a first prototype of an adaptive platform for exergames to motivate inactive children to structurally engage in physical exercise more, and better. The participative design method we used in our preliminary qualitative research led to a better understanding of the barriers to move and the psychological needs children have when it comes to physical exercise. We made a first global list of requirements for the adaptive platform and an overview of necessary design directions.Future pursuits in this project include a participative design research study amongst both children and sports professionals, and a thorough review of the literature and state of the art knowledge. We will use this knowledge to create a first prototype of an adaptive platform in collaboration with a serious game company and an organisation of sport professionals. After user testing we will use the evaluation findings as a baseline for future measurements regarding the adaptation of suggested exergames and to formalize and disseminate found design guidelines.
DOCUMENT
Abstract. Background: Physical exercise benefits functioning, health, and well-being. However, people living with dementia in particular hardly engage in exercise. Exergaming (exercise and gaming) is an innovative, fun, and relatively safe way of exercising in a virtual reality or gaming environment. It may help people living with dementia overcome barriers they can experience regarding regular exercise activities. Objective: This systematic literature review aims to provide an overview of the cost-effectiveness of exergaming and its effects on physical, cognitive, emotional, and social functioning, as well as the quality of life in people living with dementia. Methods: PubMed, Embase, Cinahl, PsycINFO, the Cochrane Library, and the Web of Science Core Collection were searched. Selection of studies was carried out by at least two independent researchers. Results: Three studies were found to be eligible and were included in this review. Two of these showed some statistically significant effects of exergaming on physical, cognitive, and emotional functioning in people living with dementia, although based on a very small sample. No articles were found about the cost-effectiveness of exergaming. Conclusion: Only a few controlled studies have been conducted into the effectiveness of exergaming, and these show very little significant benefits. More well-designed studies are necessary to examine the effects of exergaming
DOCUMENT
This paper describes explorations into related technology and research regarding the application of interactive video projection within physical education and the gym of the future. We discuss the application of exergaming in physical education, spatial augmented reality as a technology and participatory design with teachers and children as a design method to develop new concepts. Based on our initial findings we propose directions for further research. Further work includes developing new applications based on the wishes, needs and ideas of physical education teachers and children, incorporating opportunities provided by recent technological developments.
DOCUMENT
Children with cerebral palsy must perform daily exercise which is a tedious and energy consuming task. Exergames can make this routine more engaging, which can increase the compliance of the patient. This research explores the feasibility of an exergame device called the Squid Monster. The device is the result of a research through design process, and it is designed to be played on smartphones in the home environment. It operates on the smartphone's integrated sensors and two external squeeze sensors, making it accessible and cost-effective. We conceptualize how the design can be supported using a machine learning adaptive difficulty system, aiming to increase flow and therapeutic adherence of the device. Ultimately, guidelines are provided to designers for future work in this field.
DOCUMENT
Children with cerebral palsy must perform daily exercise which is a tedious and energy consuming task. Exergames can make this routine more engaging, which can increase the compliance of the patient. This research explores the feasibility of an exergame device called the Squid Monster. The device is the result of a research through design process, and it is designed to be played on smartphones in the home environment. It operates on the smartphone's integrated sensors and two external squeeze sensors, making it accessible and cost-effective. We conceptualize how the design can be supported using a machine learning adaptive difficulty system, aiming to increase flow and therapeutic adherence of the device. Ultimately, guidelines are provided to designers for future work in this field.
MULTIFILE
Exergames provide a challenging opportunity for home-based training and evaluation of postural control in the elderly population, but affordable sensor technology and algorithms for assessment of whole body movement patterns in the home environment are yet to be developed. The aim of the present study was to evaluate the use of Kinect, a commonly available video game sensor, for capturing and analyzing whole body movement patterns. Healthy adults (. n=20) played a weight shifting exergame under five different conditions with varying amplitudes and speed of sway movement, while 3D positions of ten body segments were recorded in the frontal plane using Kinect and a Vicon 3D camera system. Principal Component Analysis (PCA) was used to extract and compare movement patterns and the variance in individual body segment positions explained by these patterns. Using the identified patterns, balance outcome measures based on spatiotemporal sway characteristics were computed. The results showed that both Vicon and Kinect capture >90% variance of all body segment movements within three PCs. Kinect-derived movement patterns were found to explain variance in trunk movements accurately, yet explained variance in hand and foot segments was underestimated and overestimated respectively by as much as 30%. Differences between both systems with respect to balance outcome measures range 0.3-64.3%. The results imply that Kinect provides the unique possibility of quantifying balance ability while performing complex tasks in an exergame environment.
DOCUMENT
Bij exergaming wordt oefenen (exercise) gecombineerd met serious gaming. Binnen de geriatrische revalidatie, het vakgebied van Marije Holstege, wordt hiermee de revalidant op een leuke manier uitgedaagd tot (meer of langer) bewegen. Ook Tanja Nijboer houdt zich bezig met exergaming, zowel op motorisch als cognitief vlak. De master Advanced Health Informatics Practice (AHIP)1 was benieuwd naar de waarde van exergaming en ging het gesprek aan.
DOCUMENT