Objective: There are widespread shortages of personal protective equipment as a result of the COVID-19 pandemic. Reprocessing filtering facepiece particle (FFP)-type respirators may provide an alternative solution in keeping healthcare professionals safe. Design: Prospective, bench-to-bedside. Setting: A primary care-based study using FFP-2 respirators without exhalation valve (3M Aura 1862+ (20 samples), Maco Pharma ZZM002 (14 samples)), FFP-2 respirators with valve (3M Aura 9322+ (six samples) and San Huei 2920V (16 samples)) and valved FFP type 3 respirators (Safe Worker 1016 (10 samples)). Interventions: All masks were reprocessed using a medical autoclave (17 min at 121°C with 34 min total cycle time) and subsequently tested up to three times whether these respirators retained their integrity (seal check and pressure drop) and ability to filter small particles (0.3–5.0 µm) in the laboratory using a particle penetration test. Results: We tested 33 respirators and 66 samples for filter capacity. All FFP-2 respirators retained their shape, whereas half of the decontaminated FFP-3 respirators showed deformities and failed the seal check. The filtering capacity of the 3M Aura 1862 was best retained after one, two and three decontamination cycles (0.3 µm: 99.3%±0.3% (new) vs 97.0±1.3, 94.2±1.3% or 94.4±1.6; p<0.001). Of the other FFP-2 respirators, the San Huei 2920 V had 95.5%±0.7% at baseline vs 92.3%±1.7% vs 90.0±0.7 after one-time and two-time decontaminations, respectively (p<0.001). The tested FFP-3 respirator (Safe Worker 1016) had a filter capacity of 96.5%±0.7% at baseline and 60.3%±5.7% after one-time decontamination (p<0.001). Breathing and pressure resistance tests indicated no relevant pressure changes between respirators that were used once, twice or thrice. Conclusion: This small single-centre study shows that selected FFP-2 respirators may be reprocessed for use in primary care, as the tested masks retain their shape, ability to retain particles and breathing comfort after decontamination using a medical autoclave.
MULTIFILE
CHI PLAY '20, November 2–4, 2020, Virtual Event, Canada We have built and implemented a set of metaphors for breathing games by involving children and experts. These games are made to facilitate prevention of asthma exacerbation via regular monitoring of children with asthma through spirometry at home. To instruct and trigger children to execute the (unsupervised) spirometry correctly, we have created interactive metaphors that respond in real-time to the child’s inhalation and exhalation. Eleven metaphors have been developed in detail. Three metaphors have been fully implemented based on current guidelines for spirometry and were tested with 30 asthmatic children. Each includes multi-target incentives, responding to three different target values (inhalation, peak expiration, and complete exhalation). We postulate that the metaphors should use separate goals for these targets, have independent responses, and allow to also go beyond expected values for each of these targets. From the selected metaphors, most children preferred a dragon breathing fire and a soccer player kicking a ball into a goal as a metaphor; least liked were blowing seeds of a dandelion and applying lotion to a dog to grow its hair. Based on this project we discuss the potential and benefits of a suite-of-games approach: multiple games that each can be selected and adapted depending on personal capabilities and interests.
MULTIFILE