Background: Recently, research focus has shifted to the combination of all 24-h movement behaviors (physical activity, sedentary behavior and sleep) instead of each behavior separately. Yet, no reliable and valid proxy-report tools exist to assess all these behaviors in 0–4-year-old children. By involving end-users (parents) and key stakeholders (researchers, professionals working with young children), this mixed-methods study aimed to 1) develop a mobile application (app)-based proxy-report tool to assess 24-h movement behaviors in 0–4-year-olds, and 2) examine its content validity. Methods: First, we used concept mapping to identify activities 0–4-year-olds engage in. Parents (n = 58) and professionals working with young children (n = 21) generated a list of activities, sorted related activities, and rated the frequency children perform these activities. Second, using multidimensional scaling and cluster analysis, we created activity categories based on the sorted activities of the participants. Third, we developed the My Little Moves app in collaboration with a software developer. Finally, we examined the content validity of the app with parents (n = 14) and researchers (n = 6) using focus groups and individual interviews. Results: The app has a time-use format in which parents proxy-report the activities of their child, using eight activity categories: personal care, eating/drinking, active transport, passive transport, playing, screen use, sitting/lying calmly, and sleeping. Categories are clarified by providing examples of children’s activities. Additionally, 1–4 follow-up questions collect information on intensity (e.g., active or calm), posture, and/or context (e.g., location) of the activity. Parents and researchers considered filling in the app as feasible, taking 10–30 min per day. The activity categories were considered comprehensive, but alternative examples for several activity categories were suggested to increase the comprehensibility and relevance. Some follow-up questions were considered less relevant. These suggestions were adopted in the second version of the My Little Moves app. Conclusions: Involving end-users and key stakeholders in the development of the My Little Moves app resulted in a tailored tool to assess 24-h movement behaviors in 0–4-year-olds with adequate content validity. Future studies are needed to evaluate other measurement properties of the app.
MULTIFILE
Due to the ageing population, the prevalence of musculoskeletal disorders will continue to rise, as well as healthcare expenditure. To overcome these increasing expenditures, integration of orthopaedic care should be stimulated. The Primary Care Plus (PC+) intervention aimed to achieve this by facilitating collaboration between primary care and the hospital, in which specialised medical care is shifted to a primary care setting. The present study aims to evaluate the referral decision following orthopaedic care in PC+ and in particular to evaluate the influence of diagnostic tests on this decision. Therefore, retrospective monitoring data of patients visiting PC+ for orthopaedic care was used. Data was divided into two periods; P1 and P2. During P2, specialists in PC+ were able to request additional diagnostic tests (such as ultrasounds and MRIs). A total of 2,438 patients visiting PC+ for orthopaedic care were included in the analysis. The primary outcome was the referral decision following PC+ (back to the general practitioner (GP) or referral to outpatient hospital care). Independent variables were consultation- and patient-related predictors. To describe variations in the referral decision, logistic regression modelling was used. Results show that during P2, significantly more patients were referred back to their GP. Moreover, the multivariable analysis show a significant effect of patient age on the referral decision (OR 0.86, 95% CI = 0.81– 0.91) and a significant interaction was found between the treating specialist and the period (p = 0.015) and between patient’s diagnosis and the period (p < 0.001). Despite the significant impact of the possibility of requesting additional diagnostic tests in PC+, it is important to discuss the extent to which the availability of diagnostic tests fits within the vision of PC+. In addition, selecting appropriate profiles for specialists and patients for PC+ are necessary to further optimise the effectiveness and cost of care.
These are hard days for companies: they have to survive in a market that has been hit by a financial crisis. Many countries in Europe have severe problems trying to overcome this financial crisis. The main remedy applied by governments is to cut back on expenditure, but on the other hand it is said that it is important for a country, and especially for companies, to invest in innovation. These innovations should lead to innovative products that will lead to profitability turnovers for these companies and, as a consequence, improve the economic conditions in a country. Universities provide students with engineering competences, like develop innovation, with which they can show a higher degree of ability to answer complex questions such as how to become players in the market again. Teaching students to become more innovative engineers, Fontys University of Applied Sciences, Department of Engineering, has designed a curriculum in which students are educated in the competence innovation. An important element in the process of teaching innovation to students is the approach of inquiring into possibilities of patents. In the second semester of the first year, students can decide to join an innovative project called: ‘The invention project’. The basis of this project is that students are given the opportunity to create their own invention and with their previously acquired knowledge and skills they design, calculate, prototype and present their invention. In a research project, the experiences of students in this Invention Project have been analysed. The goal of this study was to understand what the success factors are for such a project. The basis of this inquiry is a questionnaire to identify the opinions of students. The research was carried out in the spring semester of 2012. In total 31 students were involved in this research. The results show that there was a high degree of student satisfaction about the Invention Project focused on innovation development. Success factors for this project in the first year of the curriculum were seen: 1 to work on own inventions, 2 development of student’s perception of the total product creation process and 3 to make students see the relevance of contacts with real professionals from industry and from the patent office in their own project. Improvements can be made by: 1 helping students more during the creativity stage in the project and 2 to coach them more on the aspect of engineering a successful invention of which they can be proud. This Invention project is a interesting with which collaborations with other universities can be set up.