Background: The importance of clarifying goals and providing process feedback for student learning has been widely acknowledged. From a Self-Determination Theory perspective, it is suggested that motivational and learning gains will be obtained because in well-structured learning environments, when goals and process feedback are provided, students will feel more effective (need for competence), more in charge over their own learning (need for autonomy) and experience a more positive classroom atmosphere (need for relatedness). Yet, in spite of the growing theoretical interest in goal clarification and process feedback in the context of physical education (PE), little experimental research is available about this topic. Purpose: The present study quasi-experimentally investigated whether the presence of goal clarification and process feedback positively affects students’ need satisfaction and frustration. Method: Twenty classes from five schools with 492 seventh grade PE students participated in this quasi-experimental study. Within each school, four classes were randomly assigned to one of the four experimental conditions (n = 121, n = 117, n = 126 and n = 128) in a 2 × 2 factorial design, in which goal clarification (absence vs. presence) and process feedback (absence vs. presence) were experimentally manipulated. The experimental lesson consisted of a PE lesson on handstand (a relatively new skill for seventh grade students), taught by one and the same teacher who went to the school of the students to teach the lesson. Depending on the experimental condition, the teacher either started the lesson explaining the goals, or refrained from explaining the goals. Throughout the lesson the teacher either provided process feedback, or refrained from providing process feedback. All other instructions were similar across conditions, with videos of exercises of differential levels of difficulty provided to the students. All experimental lessons were observed by a research-assistant to discern whether manipulations were provided according to a condition-specific script. One week prior to participating in the experimental lesson, data on students’ need-based experiences (i.e. quantitatively) were gathered. Directly after students’ participation in the experimental lesson, data on students’ perceptions of goal clarification and process feedback, need-based experiences (i.e. quantitatively) and experiences in general (i.e. qualitatively) were gathered. Results and discussion: The questionnaire data and observations revealed that manipulations were provided according to the lesson-scripts. Rejecting our hypothesis, quantitative analyses indicated no differences in need satisfaction across conditions, as students were equally satisfied in their need for competence, autonomy and relatedness regardless of whether the teacher provided goal clarification and process feedback, only goal clarification, only process feedback or none. Similar results were found for need frustration. Qualitative analyses indicated that, in all four conditions, aspects of the experimental lesson made students feel more effective, more in charge over their own learning and experience a more positive classroom atmosphere. Our results suggest that under certain conditions, lessons can be perceived as highly need-satisfying by students, even if the teacher does not verbally and explicitly clarify the goals and/ or provides process feedback. Perhaps, students were able to self-generate goals and feedback based on the instructional videos.
Post-earthquake structural damage shows that out-of-plane wall collapse is one of the most prevalent failure mechanisms in unreinforced masonry (URM) buildings. This issue is particularly critical in Groningen, a province located in the northern part of the Netherlands, where low-intensity ground shaking has occurred since 1991 due to gas extraction. The majority of buildings in this area are constructed using URM and were not designed to withstand earthquakes, as the area had never been affected by tectonic seismic activity before. Hence, the assessment of URM buildings in the Groningen province has become of high relevance.Out-of-plane failure mechanisms in brick masonry structures often stem from poor wall-to-wall, wall-to-floor or wall-to-roof connections that provide insufficient restraint and boundary conditions. Therefore, studying the mechanical behaviour of such connections is of prime importance for understanding and preventing damages and collapses in URM structures. Specifically, buildings with double-leaf cavity walls constitute a large portion of the building stock in the Groningen area. The connections of the leaves in cavity walls, which consist of metallic ties, are expected to play an important role. Regarding the wall-to-floor connections, the traditional way for URM structures in Dutch construction practice is either a simple masonry pocket connection or a hook anchor as-built connection, which are expected to be vulnerable to out-of-plane excitation. However, until now, little research has been carried out to characterise the seismic behaviour of connections between structural elements in traditional Dutch construction practice.This thesis investigates the seismic behaviour of two types of connections: wall-to-wall connections between cavity wall leaves and wall-to-floor connections between the masonry cavity wall and timber diaphragm, commonly found in traditional houses in the Groningen area. The research is divided into three phases: (1) inventory of existing buildings and connections in the Groningen area, (2) performance of experimental tests, and (3) proposal and validation of numerical and mechanical models. The thesis explores the three phases as follows:(i) An inventory of connections within URM buildings in the Groningen area is established. The inventory includes URM buildings of Groningen based on construction material, lateral load-resisting system, floor system, number of storeys, and connection details. Specific focus is given to the wall-to-wall and wall-to-floor connections in each URM building. The thickness of cavity wall leaves, the air gap between the leaves and the size and spacing of timber joists are key aspects of the inventory.(ii) Experimental tests are performed on the most common connection typologies identified in the inventory. This phase consists of two distinct experimental campaigns:o The first experimental campaign took place at the laboratory of the Delft University of Technology to provide a comprehensive characterisation of the axial behaviour of traditional metal tie connections in cavity walls. The campaign included a wide range of variations, such as two embedment lengths, four pre-compression levels, two different tie geometries, and five different testing protocols, including both monotonic and cyclic loading. The experimental results showed that the capacity of the wall tie connection is strongly influenced by the embedment length and the tie geometry, whereas the applied pre-compression and the loading rate do not have a significant influence.o The second experimental campaign has been carried out at the laboratory of the Hanze University of Applied Sciences to characterise the seismic behaviour of timber joist-masonry cavity wall connections, reproducing both as-built and strengthened conditions. Twenty-two unreinforced masonry wallets were tested, with different configurations, including two tie distributions, two pre-compression levels, two different as-built connections, and two different strengthening solutions. The experimental results highlighted the importance of cohesion and friction between joist and masonry since the type of failure mechanism (sliding of the joist or rocking failure of the masonry wallet) depends on the value of these two parameters. Additionally, the interaction between the joist and the wallet and the uplift of the latter activated due to rocking led to an arching effect that increased friction at the interface between the joist and the masonry. Consequently, the arching effect enhanced the force capacity of the connection.(iii) Mechanical and numerical models are proposed and validated against the performed experiments or other benchmarks. Mechanical and numerical models for the cavity wall tie and mechanical models for the timber joist-masonry connections were developed and verified by the experimental results to predict the failure mode and the strength capacity of the examined connections in URM buildings.o The mechanical model for the cavity wall tie connections considers six possible failures, namely tie failure, cone break-out failure, pull-out failure, buckling failure, piercing failure and punching failure. The mechanical model is able to capture the mean peak force and the failure mode obtained from the tests. After being calibrated against the available experiments, the proposed mechanical model is used to predict the performance of untested configurations by means of parametric analyses, including higher strength of mortar for calcium silicate brick masonry, different cavity depth, different tie embedment depth, and the use of solid bricks in place of perforated clay bricks.o The results of the experimental campaign on cavity wall ties were also utilised to calibrate a hysteretic numerical model representing the cyclic axial response of cavity wall tie connections. The proposed model uses zero-length elements implemented in OpenSees with the Pinching4 constitutive model to account for the compression-tension cyclic behaviour of the ties. The numerical model is able to capture important aspects of the tie response, such as strength degradation, unloading stiffness degradation, and pinching behaviour. The mechanical and numerical modelling approach can be easily adopted by practitioner engineers seeking to model the wall ties more accurately when assessing URM structures against earthquakes.o The mechanical model of timber-masonry connections examines two different failure modes: joist-sliding failure mode, including joist-to-wall interaction and rocking failure mode due to joist movement. Both mechanical models have been validated against the outcomes of the experimental campaigns conducted on the corresponding connections. The mechanical model is able to estimate each contribution of the studied mechanism. Structural engineers can use the mechanical model to predict the capacity of the connection for the studied failure modes.This research study can contribute to a better understanding of typical Groningen houses in terms of identifying the most common connections used at wall-to-wall and wall-to-floor connections in cavity walls, characterising the identified connections and proposing mechanical models for the studied connections.
From the article: Abstract. This exploratory and conceptual article sets out to research what arguments and possibilities for experimentation in construction exists and if experimentation can contribute towards more innovative construction as a whole. Traditional, -western- construction is very conservative and regional, often following a traditional and linear design process, which focuses on front-loaded cost savings and repetitive efficiency, rather than securing market position through innovation. Thus becoming a hindrance for the development of the sector as a whole. Exploring the effects of using the, in other design-sectors commonly and successfully practiced, “four-phased iterative method” in architectural construction could be the start of transforming the conservative construction industry towards a more innovative construction industry. The goal of this research is to find whether the proposed strategy would indeed result in a higher learning curve and more innovation during the - architectural- process. Preliminary research indicates that there is argumentation for a more experimental approach to construction.
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Synthetic ultra-black (UB) materials, which demonstrate exceptionally high absorbance (>99%) of visible light incident on their surface, are currently used as coatings in photovoltaic cells and numerous other applications. Most commercially available UB coatings are based on an array of carbon nanotubes, which are produced at relatively high temperature and result in numerous by-products. In addition, UB nanotube coatings require harsh application conditions and are very susceptible to abrasion. As a result, these coatings are currently obtained using a manufacturing process with relatively high costs, high energy consumption and low sustainability. Interestingly, an UB coating based on a biologically derived pigment could provide a cheaper and more sustainable alternative. Specifically, GLO Biotics proposes to create UB pigment by taking a bio-mimetic approach and replicate structures found in UB deep-sea fish. A recent study[1] has actually shown that specific fish have melanosomes in their skin with particular dimensions that allow absorption of up to 99.9% of incident light. In addition to this, recent advances in bacterial engineering have demonstrated that it is possible to create bacteria-derived melanin particles with very similar dimensions to the melanosomes in aforementioned fish. During this project, the consortium partners will combine both scientific observations in an attempt to provide the proof-of-concept for developing an ultra-black coating using bacteria-derived melanin particles as bio-based, sustainable pigment. For this, Zuyd University of Applied Sciences (Zuyd) and Maastricht University (UM) collaborate with GLO Biotics in the development of the innovative ‘BLACKTERIA’ UB coating technology. The partners will attempt at engineering an E. coli expression system and adapt its growth in order to produce melanin particles of desired dimensions. In addition, UM will utilize their expertise in industrial coating research to provide input for experimental set-up and the development of a desired UB coating using the bacteria-derived melanin particles as pigment.