Recent textile innovations have significantly transformed both the material structures of fibers and fabrics as well as their sphere of use and applications.At the same time, new recycling concepts and methods to re--use textile waste are rapidly being developed and many new ways to make use of recycled and reclaimed fibers have already been found. In this paper, we describe how the development of a new textile, making use of recycled fibers, sparked the development of Textile Reflexes, a robotic textile that can change shape. This paper elaborates on the development of the new textile material, the multidisciplinary approach we take to advance it towards a robotic textile and our first endeavours to implement it in a health & wellbeing context. Textile Reflexes was applied in a vest that supports posture correction and training that was evaluated in a user study. In this way, the paper demonstrates a material and product design study that bridges disciplines and that links to both environmental and social change.doi: 10.21606/dma.2017.610This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/
MULTIFILE
Injuries and lack of motivation are common reasons for discontinuation of running. Real-time feedback from wearables can reduce discontinuation by reducing injury risk and improving performance and motivation. There are however several limitations and challenges with current real-time feedback approaches. We discuss these limitations and challenges and provide a framework to optimise real-time feedback for reducing injury risk and improving performance and motivation. We first discuss the reasons why individuals run and propose that feedback targeted to these reasons can improve motivation and compliance. Secondly, we review the association of running technique and running workload with injuries and performance and we elaborate how real-time feedback on running technique and workload can be applied to reduce injury risk and improve performance and motivation. We also review different feedback modalities and motor learning feedback strategies and their application to real-time feedback. Briefly, the most effective feedback modality and frequency differ between variables and individuals, but a combination of modalities and mixture of real-time and delayed feedback is most effective. Moreover, feedback promoting perceived competence, autonomy and an external focus can improve motivation, learning and performance. Although the focus is on wearables, the challenges and practical applications are also relevant for laboratory-based gait retraining.
Athlete development depends on many factors that need to be balanced by the coach. The amount of data collected grows with the development of sensor technology. To make data-informed decisions for training prescription of their athletes, coaches could be supported by feedback through a coach dashboard. The aim of this paper is to describe the design of a coach dashboard based on scientific knowledge, user requirements, and (sensor) data to support decision making of coaches for athlete development in cyclic sports. The design process involved collaboration with coaches, embedded scientists, researchers, and IT professionals. A classic design thinking process was used to structure the research activities in five phases: empathise, define, ideate, prototype, and test phases. To understand the user requirements of coaches, a survey (n = 38), interviews (n = 8) and focus-group sessions (n = 4) were held. Design principles were adopted into mock-ups, prototypes, and the final coach dashboard. Designing a coach dashboard using the co-operative research design helped to gain deep insights into the specific user requirements of coaches in their daily training practice. Integrating these requirements, scientific knowledge, and functionalities in the final coach dashboard allows the coach to make data-informed decisions on training prescription and optimise athlete development.