The external test is the tenth and final building block of the first and second stage of the Business Model Template (BMT). You will test the viability of the business model concept you have developed so far. You can test your business model idea against all kinds of...
LINK
In this study, we investigated the effects of wearing a police uniform and gear on officers’ performance during the Physical Competence Test (PCT) of the Dutch National Police. In a counterbalanced within-subjects design, twenty-seven police officers performed the PCT twice, once wearing sportswear and once wearing a police uniform. The results showed clear indications that wearing a police uniform influenced the performance on the PCT. Participants were on average 14 seconds slower in a police uniform than in sportswear. Furthermore, performing the test in uniform was accompanied by higher RPE-scores and total physiological load. It seems that wearing a police uniform during the test diminishes the discrepancy between physical fitness needed to pass the simulated police tasks in the PCT and the job-specific physical fitness that is required during daily police work. This suggests that wearing a police uniform during the test will increase the representativeness of the testing environment for the work field.
DOCUMENT
Limited evidence is available about (non)-representativeness of participants in health-promoting interventions. The Dutch Healthy Primary School of the Future (HPSF)-study is a school-based study aiming to improve health through altering physical activity and dietary behaviour, that started in 2015 (registered in ClinicalTrials.gov on14-06-2016, NCT02800616). The study has a response rate of 60%. A comprehensive non-responder analysis was carried out, and responders were compared with schoolchildren from the region and the Netherlands using a cross-sectional design. External sources were consulted to collect non-responder, regional, and national data regarding relevant characteristics including sex, demographics, health, and lifestyle. The Chi-square test, Mann-Whitney U test, or Student's t-test were used to analyse differences.
DOCUMENT
Various companies in diagnostic testing struggle with the same “valley of death” challenge. In order to further develop their sensing application, they rely on the technological readiness of easy and reproducible read-out systems. Photonic chips can be very sensitive sensors and can be made application-specific when coated with a properly chosen bio-functionalized layer. Here the challenge lies in the optical coupling of the active components (light source and detector) to the (disposable) photonic sensor chip. For the technology to be commercially viable, the price of the disposable photonic sensor chip should be as low as possible. The coupling of light from the source to the photonic sensor chip and back to the detectors requires a positioning accuracy of less than 1 micrometer, which is a tremendous challenge. In this research proposal, we want to investigate which of the six degrees of freedom (three translational and three rotational) are the most crucial when aligning photonic sensor chips with the external active components. Knowing these degrees of freedom and their respective range we can develop and test an automated alignment tool which can realize photonic sensor chip alignment reproducibly and fully autonomously. The consortium with expertise and contributions in the value chain of photonics interfacing, system and mechanical engineering will investigate a two-step solution. This solution comprises a passive pre-alignment step (a mechanical stop determines the position), followed by an active alignment step (an algorithm moves the source to the optimal position with respect to the chip). The results will be integrated into a demonstrator that performs an automated procedure that aligns a passive photonic chip with a terminal that contains the active components. The demonstrator is successful if adequate optical coupling of the passive photonic chip with the external active components is realized fully automatically, without the need of operator intervention.
In order to stay competitive and respond to the increasing demand for steady and predictable aircraft turnaround times, process optimization has been identified by Maintenance, Repair and Overhaul (MRO) SMEs in the aviation industry as their key element for innovation. Indeed, MRO SMEs have always been looking for options to organize their work as efficient as possible, which often resulted in applying lean business organization solutions. However, their aircraft maintenance processes stay characterized by unpredictable process times and material requirements. Lean business methodologies are unable to change this fact. This problem is often compensated by large buffers in terms of time, personnel and parts, leading to a relatively expensive and inefficient process. To tackle this problem of unpredictability, MRO SMEs want to explore the possibilities of data mining: the exploration and analysis of large quantities of their own historical maintenance data, with the meaning of discovering useful knowledge from seemingly unrelated data. Ideally, it will help predict failures in the maintenance process and thus better anticipate repair times and material requirements. With this, MRO SMEs face two challenges. First, the data they have available is often fragmented and non-transparent, while standardized data availability is a basic requirement for successful data analysis. Second, it is difficult to find meaningful patterns within these data sets because no operative system for data mining exists in the industry. This RAAK MKB project is initiated by the Aviation Academy of the Amsterdam University of Applied Sciences (Hogeschool van Amsterdan, hereinafter: HvA), in direct cooperation with the industry, to help MRO SMEs improve their maintenance process. Its main aim is to develop new knowledge of - and a method for - data mining. To do so, the current state of data presence within MRO SMEs is explored, mapped, categorized, cleaned and prepared. This will result in readable data sets that have predictive value for key elements of the maintenance process. Secondly, analysis principles are developed to interpret this data. These principles are translated into an easy-to-use data mining (IT)tool, helping MRO SMEs to predict their maintenance requirements in terms of costs and time, allowing them to adapt their maintenance process accordingly. In several case studies these products are tested and further improved. This is a resubmission of an earlier proposal dated October 2015 (3rd round) entitled ‘Data mining for MRO process optimization’ (number 2015-03-23M). We believe the merits of the proposal are substantial, and sufficient to be awarded a grant. The text of this submission is essentially unchanged from the previous proposal. Where text has been added – for clarification – this has been marked in yellow. Almost all of these new text parts are taken from our rebuttal (hoor en wederhoor), submitted in January 2016.
De horeca-sector en het toerisme worden zwaar getroffen door de huidige crisis. Omzetschade is historisch groot; tegelijkertijd zijn er vanuit de praktijk veel vragen over hoe nieuwe werkwijzen moeten worden ontwikkeld en toegepast. Voor onze sector voorziet onderzoek in het kader van de Impuls-regeling daarom onmiskenbaar in een grote maatschappelijke behoefte. Hotelschool The Hague (HTH) zet strategisch in op het behoud en de versterking van praktijkgericht onderzoek en op het onderzoekend vermogen van haar studenten. Onderzoekend vermogen is, voor toekomstige afstudeerders in een snel veranderende arbeidsmarkt, door de HTH gedefinieerd als cruciale kernvaardigheid. In dit kader zijn recent de onderwijs- en onderzoeksprogramma’s van de HTH hervormd rond de principes van Design Oriented Research. Door de COVID-19 crisis is de continuïteit van het praktijkgericht onderzoek van de HTH, misschien nog wel meer dan bij brede hogescholen onder druk komen te staan. Met het hier voorgestelde Impuls 2020 bestedingsplan wil HTH de onderzoeksfunctie van haar praktische outlets — haar schoolrestaurants en -hotels— verder versterken zodat deze kunnen worden ingericht en gebruikt als ‘test-beds’ of HTH Labs. De schoolrestaurants en -hotels worden hiermee een faciliteit voor experimenteel, praktijkgericht onderzoek waar in commerciële bedrijven vaak geen mogelijkheid voor is. Dit Impuls 2020 voorstel behelst de visievorming voor de HTH Labs en de netwerkvorming met andere kennisinstellingen en met bedrijven als beoogde afnemers van de kennis die in de Labs ontwikkeld zal worden. Het voorstel voorziet tevens in de uitvoering van 3 pilotstudies die de mogelijkheden van de HTH Labs inzichtelijk maken voor het bedrijfsleven. De Impuls financiering zal uiteindelijk resulteren in een operationele onderzoeksfaciliteit in de schoolrestaurants en -hotels van de HTH, en in drie onderzoeksrapporten met bijbehorende disseminatie-activiteiten.