Publinova logo

Zoekresultaten

Producten 1.574

product

Renegotiating the non-social license to operate: natural gas extraction from goldmine to controversial business

Natural gas extraction from the Groningen gas fields in the Netherlands used to be a non-controversial activity, but became highly contested over the past few years. In addition to a political mandate to commercially operate the Groningen gas fields, NAM needs approval from local residents and society at large. In this study, we analyse how NAM attempted to maintain its social license

PDF

product

Thesaurus based term ranking for keyword extraction

A common strategy to assign keywords to documents is to select the most appropriate words from the document text. One of the most important criteria for a word to be selected as keyword is its relevance for the text. The tf.idf score of a term is a widely used relevance measure. While easy to compute and giving quite satisfactory results, this measure does not take (semantic) relations between words into account.

PDF

Thesaurus based term ranking for keyword extraction
product

Effects of preservation on protein extraction in four seaweed species

Using either freshly pulped or preserved seaweed biomass for the extraction of protein can have a great effect on the amount of protein that can be extracted. In this study, the effect of four preservation techniques (frozen, freeze-dried, and air-dried at 40 and 70 °C) on the protein extractability, measured as Kjeldahl nitrogen, of four seaweed species, Chondrus crispus (Rhodophyceae), Ascophyllum nodosum, Saccharina latissima (both Phaeophyceae) and Ulva lactuca (Chlorophyceae), was tested and compared with extracting freshly pulped biomass. The effect of preservation is species dependent: in all four seaweed species, a differenttreatment resulted in the highest protein extractability. The pellet (i.e., the non-dissolved biomass after extraction) was also analyzed as in most cases the largest part of the initial protein ended up in the pellet and not in the supernatant. Of the four species tested, freeze-dried A. nodosum yielded the highest overall protein extractability of 59.6% with a significantly increased protein content compared with the sample before extraction. For C. crispus extracting biomass air-dried at 40 °C gave the best results with a protein extractability of 50.4%. Preservation had little effect on the protein extraction for S. latissima; only air-drying at 70 °C decreased the yield significantly. Over 70% of the initial protein ended up in the pellet for all U. lactuca extractions while increasing the protein content significantly. Extracting freshly pulped U. lactuca resulted in a 78% increase in protein content in the pellet while still containing 84.5% of the total initial total protein. These results show the importance of the right choice when selecting a preservation method and seaweed species for protein extraction. Besides the extracted protein fraction, the remainingpellet also has the potential as a source with an increased protein content.

MULTIFILE

Effects of preservation on protein extraction in four seaweed species

Personen 2

persoon

Gerard Schepers

Professor

Gerard  Schepers
persoon

Rob van Haren

Professor

Rob van Haren

Projecten 28

project

ALGOL: Biocascading phytosterols from marine micro and macro algae, a feasibility study for biocircular economy

Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols. Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation. The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol. A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.

Afgerond
project

ALGOL: Biocascading phytosterols from marine micro and macro algae, a feasibility study for biocircular economy

Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols.Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation.The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol.A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.

Afgerond
project

Anthocyanins as novel sustainable antimicrobial preservatives

Chemical preservation is an important process that prevents foods, personal care products, woods and household products, such as paints and coatings, from undesirable change or decomposition by microbial growth. To date, many different chemical preservatives are commercially available, but they are also associated with health threats and severe negative environmental impact. The demand for novel, safe, and green chemical preservatives is growing, and this process is further accelerated by the European Green Deal. It is expected that by the year of 2050 (or even as soon as 2035), all preservatives that do not meet the ‘safe-by-design’ and ‘biodegradability’ criteria are banned from production and use. To meet these European goals, there is a large need for the development of green, circular, and bio-degradable antimicrobial compounds that can serve as alternatives for the currently available biocidals/ preservatives. Anthocyanins, derived from fruits and flowers, meet these sustainability goals. Furthermore, preliminary research at the Hanze University of Applied Science has confirmed the antimicrobial efficacy of rose and tulip anthocyanin extracts against an array of microbial species. Therefore, these molecules have the potential to serve as novel, sustainable chemical preservatives. In the current project we develop a strategy consisting of fractionation and state-of-the-art characterization methods of individual anthocyanins and subsequent in vitro screening to identify anthocyanin-molecules with potent antimicrobial efficacy for application in paints, coatings and other products. To our knowledge this is the first attempt that combines in-depth chemical characterization of individual anthocyanins in relation to their antimicrobial efficacy. Once developed, this strategy will allow us to single out anthocyanin molecules with antimicrobial properties and give us insight in structure-activity relations of individual anthocyanins. Our approach is the first step towards the development of anthocyanin molecules as novel, circular and biodegradable non-toxic plant-based preservatives.

Afgerond