Background: Research on maternity care often focuses on factors that prevent good communication and collaboration and rarely includes important stakeholders – parents – as co-researchers. To understand how professionals and parents in Dutch maternity care accomplish constructive communication and collaboration, we examined their interactions in the clinic, looking for “good practice”. Methods: We used the video-reflexive ethnographic method in 9 midwifery practices and 2 obstetric units. Findings: We conducted 16 meetings where participants reflected on video recordings of their clinical interactions. We found that informal strategies facilitate communication and collaboration: “talk work” – small talk and humour – and “work beyond words” – familiarity, use of sight, touch, sound, and non-verbal gestures. When using these strategies, participants noted that it is important to be sensitive to context, to the values and feelings of others, and to the timing of care. Our analysis of their ways of being sensitive shows that good communication and collaboration involves “paradoxical care”, e.g., concurrent acts of “regulated spontaneity” and “informal formalities”. Discussion: Acknowledging and reinforcing paradoxical care skills will help caregivers develop the competencies needed to address the changing demands of health care. The video-reflexive ethnographic method offers an innovative approach to studying everyday work, focusing on informal and implicit aspects of practice and providing a bottom up approach, integrating researchers, professionals and parents. Conclusion: Good communication and collaboration in maternity care involves “paradoxical care” requiring social sensitivity and self-reflection, skills that should be included as part of professional training.
Transitions in health care and the increasing pace at which technological innovations emerge, have led to new professional approach at the crossroads of health care and technology. In order to adequately deal with these transition processes and challenges before future professionals access the labour market, Fontys University of Applied Sciences is in a transition to combining education with interdisciplinary practice-based research. Fontys UAS is launching a new centre of expertise in Health Care and Technology, which is a new approach compared to existing educational structures. The new centre is presented as an example of how new initiatives in the field of education and research at the intersection of care and technology can be shaped.
Nationwide and across the globe, the quality, affordability, and accessibility of home-based healthcare are under pressure. This issue stems from two main factors: the rapidly growing ageing population and the concurrent scarcity of healthcare professionals. Older people aspire to live independently in their homes for as long as possible. Additionally, governments worldwide have embraced policies promoting “ageing in place,” reallocating resources from institutions to homes and prioritising home-based services to honour the desire of older people to continue living at home while simultaneously addressing the rising costs associated with traditional institutional care.Considering the vital role of district nursing care and the fact that the population of older people in need of assistance at home is growing, it becomes clear that district nursing care plays a crucial role in primary care. The aim of this thesis is twofold: 1) to strengthen the evidence base for district nursing care; and 2) to explore the use of outcomes for learning and improving in district nursing care. The first part of this thesis examines the current delivery of district nursing care and explores its challenges during the COVID-19 pandemic to strengthen the evidence base and get a better understanding of district nursing care. Alongside the goal of strengthening the evidence for district nursing care, the second part of this thesis explores the use of patient outcomes for learning and improving district nursing care. It focuses on nurse-sensitive patient outcomes relevant to district nursing care, their current measurement in practice, and what is needed to use outcomes for learning and improving district nursing practice.
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).
Receiving the first “Rijbewijs” is always an exciting moment for any teenager, but, this also comes with considerable risks. In the Netherlands, the fatality rate of young novice drivers is five times higher than that of drivers between the ages of 30 and 59 years. These risks are mainly because of age-related factors and lack of experience which manifests in inadequate higher-order skills required for hazard perception and successful interventions to react to risks on the road. Although risk assessment and driving attitude is included in the drivers’ training and examination process, the accident statistics show that it only has limited influence on the development factors such as attitudes, motivations, lifestyles, self-assessment and risk acceptance that play a significant role in post-licensing driving. This negatively impacts traffic safety. “How could novice drivers receive critical feedback on their driving behaviour and traffic safety? ” is, therefore, an important question. Due to major advancements in domains such as ICT, sensors, big data, and Artificial Intelligence (AI), in-vehicle data is being extensively used for monitoring driver behaviour, driving style identification and driver modelling. However, use of such techniques in pre-license driver training and assessment has not been extensively explored. EIDETIC aims at developing a novel approach by fusing multiple data sources such as in-vehicle sensors/data (to trace the vehicle trajectory), eye-tracking glasses (to monitor viewing behaviour) and cameras (to monitor the surroundings) for providing quantifiable and understandable feedback to novice drivers. Furthermore, this new knowledge could also support driving instructors and examiners in ensuring safe drivers. This project will also generate necessary knowledge that would serve as a foundation for facilitating the transition to the training and assessment for drivers of automated vehicles.