In the past decade, the fast and transient coupling and uncoupling of functionally related brain regions into networks has received much attention in cognitive neuroscience. Empirical tools to study network coupling include functional magnetic resonance imaging (fMRI)-based functional and/or effective connectivity, and electroencephalography (EEG)/magnetoencephalography-based measures of neuronal synchronization. Here we use simultaneously recorded EEG and fMRI to assess whether fMRI-based connectivity and frequency-specific EEG power are related. Using data collected during resting state, we studied whether posterior EEG alpha power fluctuations are correlated with connectivity within the visual network and between the visual cortex and the rest of the brain. The results show that when alpha power increases, BOLD connectivity between the primary visual cortex and occipital brain regions decreases and that the negative relation of the visual cortex with the anterior/medial thalamus decreases and the ventral–medial prefrontal cortex is reduced in strength. These effects were specific for the alpha band, and not observed in other frequency bands. The decreased connectivity within the visual system may indicate an enhanced functional inhibition during a higher alpha activity. This higher inhibition level also attenuates long-range intrinsic functional antagonism between the visual cortex and the other thalamic and cortical regions. Together, these results illustrate that power fluctuations in posterior alpha oscillations result in local and long-range neural connectivity changes.
LINK
Semantic unification during sentence comprehension has been associated with amplitude change of the N400 in event-related potential (ERP) studies, and activation in the left inferior frontal gyrus (IFG) in functional magnetic resonance imaging (fMRI) studies. However, the specificity of this activation to semantic unification remains unknown. To more closely examine the brain processes involved in semantic unification, we employed simultaneous EEG-fMRI to time-lock the semantic unification related N400 change, and integrated trial-by-trial variation in both N400 and BOLD change beyond the condition-level BOLD change difference measured in traditional fMRI analyses. Participants read sentences in which semantic unification load was parametrically manipulated by varying cloze probability. Separately, ERP and fMRI results replicated previous findings, in that semantic unification load parametrically modulated the amplitude of N400 and cortical activation. Integrated EEG-fMRI analyses revealed a different pattern in which functional activity in the left IFG and bilateral supramarginal gyrus (SMG) was associated with N400 amplitude, with the left IFG activation and bilateral SMG activation being selective to the condition-level and trial-level of semantic unification load, respectively. By employing the EEG-fMRI integrated analyses, this study among the first sheds light on how to integrate trial-level variation in language comprehension.
LINK
Recognition of action, goals and intentions has been shown to be mediated by a multimodal mirror-neuron system, not only in monkeys, but also in humans. A fronto-parietal network of brain areas has been identified where these neurons are located. We should expect musical actions, goals and intentions to be mediated by this system as well. In this fMRI study, we present audio recordings of music composed in two-part harmony to 10 professional, improvising keyboard performers. The first task (Motor Imagery) was to imagine playing the piece, the second task (Judgment) to listen attentively while assessing the performance . Half of the pieces were familiar, the other half unfamiliar. A group of musically unskilled subjects participated as controls. As hypothesized, a fronto-parietal network of cerebral areas was activated, not only during Motor Imagery, but also during Judgement, including activity in left, ventral PMC. In a behavioral test, the ability of these performers to recognize musical actions, goals and intentions was corroborated. Performers listened to various excerpts, played them by ear, harmonized them and transposed them, demonstrating that they not only could replicate, but also manipulate them in a musically plausible manner, suggesting that the cerebral activations observed could indeed be ascribed to recognition of musical action, goals and intentions.
DOCUMENT
Mirror neurons in the cerebral cortex have been shown to fire not onlyduring performance but also during visual and auditory observation ofactivity. This phenomenon is commonly called cerebral resonance behavior.This would mean that cortical motor regions would not only beactivated while singing, but also while listening to music. The sameshould hold true for playing a music instrument. Although most individualsare able to sing along when they hear a melody, even highlyskilled instrumentalists, however, are frequently unable to play by ear.They are score-dependent—i.e. they are only able to play a piece of musicwhen they have access to the notes—while musicians who are able to playby ear and improvise are non score-dependent; they are able to playwithout notes. Our hypothesis is that score-dependent instrumentalistswill exhibit less cerebral resonance behavior than non score-dependentmusicians while listening to music. Using fMRI to measure BOLD response,subjects listen to two-part harmony presented with headphones.The following experimental conditions are distinguished: (1) well-knownvs. unknown music (2) motor imagery vs. attentive listening. A voxelbasedanalysis of differences between the condition-related cerebral activationsis performed using Statistical Parametric Mapping.
DOCUMENT
Mirror neurons in the cerebral cortex have been shown to fire not onlyduring performance but also during visual and auditory observation ofactivity. This phenomenon is commonly called cerebral resonance behavior.This would mean that cortical motor regions would not only beactivated while singing, but also while listening to music. The sameshould hold true for playing a music instrument. Although most individualsare able to sing along when they hear a melody, even highlyskilled instrumentalists, however, are frequently unable to play by ear.They are score-dependent—i.e. they are only able to play a piece of musicwhen they have access to the notes—while musicians who are able to playby ear and improvise are non score-dependent; they are able to playwithout notes. Our hypothesis is that score-dependent instrumentalistswill exhibit less cerebral resonance behavior than non score-dependentmusicians while listening to music. Using fMRI to measure BOLD response,subjects listen to two-part harmony presented with headphones.The following experimental conditions are distinguished: (1) well-knownvs. unknown music (2) motor imagery vs. attentive listening. A voxelbasedanalysis of differences between the condition-related cerebral activationsis performed using Statistical Parametric Mapping.
LINK
Not having enough of what one needs has long been shown to have detrimental consequences for decision making. Recent work suggests that the experience of insufficient resources can create a “scarcity” mindset; increasing attention toward the scarce resource itself, but at the cost of attention for unrelated aspects. To investigate the effects of a scarcity mindset on consumer choice behavior, as well as its underlying neural mechanisms, we used an experimental manipulation to induce both a scarcity and an abundance mindset within participants and examined the effects of both mindsets on participants’ willingness to pay for familiar food items while being scanned using fMRI. Results demonstrated that a scarcity mindset affects neural mechanisms related to consumer decision making. When in a scarcity mindset compared with an abundance mindset, participants had increased activity in the orbitofrontal cortex, a region often implicated in valuation processes. Moreover, again compared with abundance, a scarcity mindset decreased activity in dorsolateral prefrontal cortex, an area well known for its role in goal-directed choice. This effect was predominant in the group of participants who experienced scarcity following abundance, suggesting that the effects of scarcity are largest when they are compared with previous situations when resources were plentiful. More broadly, these data suggest a potential neural locus for a scarcity mindset and demonstrate how these changes in brain activity might underlie goal-directed decision making.
DOCUMENT
Using fMRI, cerebral activations were studied in 24 classically-trained keyboard performers and 12 musically unskilled control subjects. Two groups of musicians were recruited: improvising (n=12) and score-dependent (non-improvising) musicians (n=12). While listening to both familiar and unfamiliar music, subjects either (covertly) appraised the presented music performance or imagined they were playing the music themselves. We hypothesized that improvising musicians would exhibit enhanced efficiency of audiomotor transformation reflected by stronger ventral premotor activation. Statistical Parametric Mapping revealed that, while virtually 'playing along' with the music, improvising musicians exhibited activation of a right-hemisphere distribution of cerebral areas including posterior-superior parietal and dorsal premotor cortex. Involvement of these right-hemisphere dorsal stream areas suggests that improvising musicians recruited an amodal spatial processing system subserving pitch-to-space transformations to facilitate their virtual motor performance. Score-dependent musicians recruited a primarily left-hemisphere pattern of motor areas together with the posterior part of the right superior temporal sulcus, suggesting a relationship between aural discrimination and symbolic representation. Activations in bilateral auditory cortex were significantly larger for improvising musicians than for score-dependent musicians, suggesting enhanced top-down effects on aural perception. Our results suggest that learning to play a music instrument primarily from notation predisposes musicians toward aural identification and discrimination, while learning by improvisation involves audio-spatial-motor transformations, not only during performance, but also perception.
DOCUMENT
Inleiding Het tweejarige onderzoeksproject ‘Dierzaam’ richt zich op het verleiden van consumenten om duurzaam geproduceerd vlees te kopen in plaats van regulier vlees. Vlees eten is diepgeworteld in onze eetcultuur. Het veranderen van eetpatronen naar minder en beter vlees, naar geheel geen vlees of de overstap naar kweekvlees, vraagt tijd. Om op kortere termijn een verschil te maken, zal het stimuleren van de keuze van consumenten voor duurzaam geproduceerd vlees in belangrijke mate bijdragen aan de gewenste verandering richting ‘minder en beter
DOCUMENT
The historically developed practice of learning to play a music instrument from notes instead of by imitation or improvisation makes it possible to contrast two types of skilled musicians characterized not only by dissimilar performance practices, but also disparate methods of audiomotor learning. In a recent fMRI study comparing these two groups of musicians while they either imagined playing along with a recording or covertly assessed the quality of the performance, we observed activation of a right-hemisphere network of posterior superior parietal and dorsal premotor cortices in improvising musicians, indicating more efficient audiomotor transformation. In the present study, we investigated the detailed performance characteristics underlying the ability of both groups of musicians to replicate music on the basis of aural perception alone. Twenty-two classically trained improvising and score-dependent musicians listened to short, unfamiliar two-part excerpts presented with headphones. They played along or replicated the excerpts by ear on a digital piano, either with or without aural feedback. In addition, they were asked to harmonize or transpose some of the excerpts either to a different key or to the relative minor. MIDI recordings of their performances were compared with recordings of the aural model. Concordance was expressed in an audiomotor alignment score computed with the help of music information retrieval algorithms. Significantly higher alignment scores were found when contrasting groups, voices, and tasks. The present study demonstrates the superior ability of improvising musicians to replicate both the pitch and rhythm of aurally perceived music at the keyboard, not only in the original key, but also in other tonalities. Taken together with the enhanced activation of the right dorsal frontoparietal network found in our previous fMRI study, these results underscore the conclusion that the practice of improvising music can be associated with enhanced audiomotor transformation in response to aurally perceived music.
LINK