Incentives are frequently used by governments and employers to encourage cooperation. Here, we investigated the effect of centralized incentives on cooperation, firstly in a behavioral study and then replicated in a subsequent neuroimaging (fMRI) study. In both studies, participants completed a novel version of the Public Goods Game, including experimental conditions in which the administration of centralized incentives was probabilistic and incentives were either of a financial or social nature. Behavioral results showed that the prospect of potentially receiving financial and social incentives significantly increased cooperation, with financial incentives yielding the strongest effect. Neuroimaging results showed that activation in the bilateral lateral orbitofrontal cortex and precuneus increased when participants were informed that incentives would be absent versus when they were present. Furthermore, activation in the medial orbitofrontal cortex increased when participants would potentially receive a social versus a financial incentive. These results speak to the efficacy of different types of centralized incentives in increasing cooperative behavior, and they show that incentives directly impact the neural mechanisms underlying cooperation.
The historically developed practice of learning to play a music instrument from notes instead of by imitation or improvisation makes it possible to contrast two types of skilled musicians characterized not only by dissimilar performance practices, but also disparate methods of audiomotor learning. In a recent fMRI study comparing these two groups of musicians while they either imagined playing along with a recording or covertly assessed the quality of the performance, we observed activation of a right-hemisphere network of posterior superior parietal and dorsal premotor cortices in improvising musicians, indicating more efficient audiomotor transformation. In the present study, we investigated the detailed performance characteristics underlying the ability of both groups of musicians to replicate music on the basis of aural perception alone. Twenty-two classically trained improvising and score-dependent musicians listened to short, unfamiliar two-part excerpts presented with headphones. They played along or replicated the excerpts by ear on a digital piano, either with or without aural feedback. In addition, they were asked to harmonize or transpose some of the excerpts either to a different key or to the relative minor. MIDI recordings of their performances were compared with recordings of the aural model. Concordance was expressed in an audiomotor alignment score computed with the help of music information retrieval algorithms. Significantly higher alignment scores were found when contrasting groups, voices, and tasks. The present study demonstrates the superior ability of improvising musicians to replicate both the pitch and rhythm of aurally perceived music at the keyboard, not only in the original key, but also in other tonalities. Taken together with the enhanced activation of the right dorsal frontoparietal network found in our previous fMRI study, these results underscore the conclusion that the practice of improvising music can be associated with enhanced audiomotor transformation in response to aurally perceived music.
LINK