Recent research has indicated an increase in the likelihood and impact of tree failure. The potential for trees to fail relates to various biomechanical and physical factors. Strikingly, there seems to be an absence of tree risk assessment methods supported by observations, despite an increasing availability of variables and parameters measured by scientists, arborists and practitioners. Current urban tree risk assessments vary due to differences in experience, training, and personal opinions of assessors. This stresses the need for a more objective method to assess the hazardousness of urban trees. The aim of this study is to provide an overview of factors that influence tree failure including stem failure, root failure and branch failure. A systematic literature review according to the PRISMA guidelines has been performed in databases, supported by backward referencing: 161 articles were reviewed revealing 142 different factors which influenced tree failure. A meta-analysis of effect sizes and p-values was executed on those factors which were associated directly with any type of tree failure. Bayes Factor was calculated to assess the likelihood that the selected factors appear in case of tree failure. Publication bias was analysed visually by funnel plots and results by regression tests. The results provide evidence that the factors Height and Stem weight positively relate to stem failure, followed by Age, DBH, DBH squared times H, and Cubed DBH (DBH3) and Tree weight. Stem weight and Tree weight were found to relate positively to root failure. For branch failure no relating factors were found. We recommend that arborists collect further data on these factors. From this review it can further be concluded that there is no commonly shared understanding, model or function available that considers all factors which can explain the different types of tree failure. This complicates risk estimations that include the failure potential of urban trees.
MULTIFILE
Abstract: Background: Little is known about frailty among patients hospitalized with heart failure (HF). To date, the limited information on frailty in HF is based on a unidimensional view of frailty, in which only physical aspects are considered when determining frailty. The aims of this study were to study different dimensions of frailty (physical, psychological and social) in patients with HF and the effect of different dimensions of frailty on the incidence of heart failure. Methods: The study used a cross-sectional design and included 965 patients hospitalized for heart failure and 164 healthy controls. HF was defined according to the ESC guidelines. The Tilburg Frailty Indicator (TFI) was used to assess frailty. Probit regression analyses and chi-square statistics were used to examine associations between the occurrence of heart failure and TFI domains of frailty. Results: Patients diagnosed with frailty were 15.3% more likely to develop HF compared to those not diagnosed with frailty (p < 0.001). An increase in physical, psychological and social frailty corresponded to an increased risk of HF of 2.9% (p < 0.001), 4.4% (p < 0.001) and 6.6% (p < 0.001), respectively. Conclusions: We found evidence of the association between different dimensions of frailty and incidence of HF.
DOCUMENT
The prevention and diagnosis of frailty syndrome (FS) in cardiac patients requires innovative systems to support medical personnel, patient adherence, and self-care behavior. To do so, modern medicine uses a supervised machine learning approach (ML) to study the psychosocial domains of frailty in cardiac patients with heart failure (HF). This study aimed to determine the absolute and relative diagnostic importance of the individual components of the Tilburg Frailty Indicator (TFI) questionnaire in patients with HF. An exploratory analysis was performed using machine learning algorithms and the permutation method to determine the absolute importance of frailty components in HF. Based on the TFI data, which contain physical and psychosocial components, machine learning models were built based on three algorithms: a decision tree, a random decision forest, and the AdaBoost Models classifier. The absolute weights were used to make pairwise comparisons between the variables and obtain relative diagnostic importance. The analysis of HF patients’ responses showed that the psychological variable TFI20 diagnosing low mood was more diagnostically important than the variables from the physical domain: lack of strength in the hands and physical fatigue. The psychological variable TFI21 linked with agitation and irritability was diagnostically more important than all three physical variables considered: walking difficulties, lack of hand strength, and physical fatigue. In the case of the two remaining variables from the psychological domain (TFI19, TFI22), and for all variables from the social domain, the results do not allow for the rejection of the null hypothesis. From a long-term perspective, the ML based frailty approach can support healthcare professionals, including psychologists and social workers, in drawing their attention to the nonphysical origins of HF.
DOCUMENT
Rotating machinery, such as centrifugal pumps, turbines, bearings, and other critical systems, is the backbone of various industrial processes. Their failures can lead to significant maintenance costs and downtime. To ensure their continuous operation, we propose a fault diagnosis and monitoring framework that leverages the innovative use of acoustic sensors for early fault detection, especially in components less accessible for traditional vibration-based monitoring strategies. The main objective of the proposed project is to develop a fault diagnosis and monitoring framework for rotating machinery, including the fusion of acoustic sensors and physics-based models. By combining real-time monitoring data from acoustic sensors with an understanding of first principles, the framework will enable maintenance practitioners to identify and categorize different failure modes such as wear, fatigue, cavitation, reduced flow, bearing damage, impeller damage, misalignment, etc. In the initial phase, the focus will be on centrifugal pumps using the existing test set-up at the University of Twente. Sorama specializes in acoustic sensors to locate noise sources and will provide acoustic cameras to capture sound patterns related to pump deterioration during various operating conditions. These acoustic signals will then be correlated with the different failure modes and mechanisms that will be described by physics-based models, such as wear, fatigue, cavitation, corrosion, etc. Furthermore, a recently published data set by the Dynamics Based Maintenance research group that includes vibration analysis data and motor current analysis data of various fault scenarios, such as mentioned above, will be used as validation. The anticipated outcome of this project is a versatile framework for a physics-informed acoustic monitoring system. This system is designed to enhance early fault detection significantly, reducing maintenance costs and downtime across a broad spectrum of industrial applications, from centrifugal pumps to turbines, bearings, and beyond.
Door de vergrijzing ontstaat er een groeiende kloof tussen de behoefte aan zorgondersteuning en beschikbare menskracht om die ondersteuning te leveren. Robots kunnen hierbij mogelijk een rol spelen. Maar dan moeten deze robots wel veilig moeten zijn in hun interactie met mensen. Doel van dit project is het ontwikkelen van een Robot Safety-Module die kan garanderen dat een robot zich op een veilige manier gedraagt, of anders op een veilige manier tot stilstand komt. We richten ons daarbij op zorgrobots als Rose en Pepper, waarbij Rose model staat voor robots die een fysieke interactie met de omgeving kunnen aangaan, terwijl Pepper model staat voor de categorie sociale robots. Een robot die wordt gebruikt in een zorginstelling moet werken zonder enig risico voor lichamelijk of geestelijk gehandicapten die in die zorginstelling wonen. Rose is een semi-autonome servicerobot die zich autonoom kan verplaatsen (ronde lopen) en simpele interactie met de omgeving kan aangaan (bijvoorbeeld iets van de grond oprapen). Voor complexere handelingen kan Rose ook worden bestuurd door een operator op afstand, die Rose nauwkeurig naar een bepaalde locatie kan sturen, objecten herkennen, grijpen en plaatsen. Pepper is een sociale robot, die met armgebaren en body motion emotie ondersteunt, maar zich ook kan verplaatsen. De Robot Safety-Module moet garanderen dat de robot wordt gestopt en in een veilige toestand wordt gebracht, wanneer de signalen van de sensoren vooraf gedefinieerde grenzen overschrijden. Om het benodigde betrouwbaarheidsniveau te verkrijgen, zullen we een veiligheidsanalyse uitvoeren volgens de Failure Modes and Effects Analysis (FMEA). Vervolgens worden drie opties onderzocht: 1) een Robot Safety-Module (RSM) die zijn eigen set sensoren heeft, 2) een RSM die zowel zijn eigen set sensoren gebruikt als die van de zorgrobot en 3) een RSM die zich uitsluitend baseert op de reeds aanwezige sensoren en actuatoren van de zorgrobot.