Abstract Purpose To determine the predictive value of quality of life for mortality at the domain and item levels. Methods This longitudinal study was carried out in a sample of 479 Dutch people aged 75 years or older living independently, using a follow-up of 7 years. Participants completed a self-report questionnaire. Quality of life was assessed with the WHOQOL-BREF, including four domains: physical health, psychological, social relationships, and environment. The municipality of Roosendaal (a town in the Netherlands) indicated the dates of death of the individuals. Results Based on mean, all quality of life domains predicted mortality adjusted for gender, age, marital status, education, and income. The hazard ratios ranged from 0.811 (psychological) to 0.933 (social relationships). The areas under the curve (AUCs) of the four domains were 0.730 (physical health), 0.723 (psychological), 0.693 (social relationships), and 0.700 (environment). In all quality of life domains, at least one item predicted mortality (adjusted). Conclusion Our study showed that all four quality of life domains belonging to the WHOQOL-BREF predict mortality in a sample of Dutch community-dwelling older people using a follow-up period of 7 years. Two AUCs were above threshold (psychological, physical health). The findings offer health care and welfare professionals evidence for conducting interventions to reduce the risk of premature death.
DOCUMENT
Introduction Many health care interventions have been developed that aim to improve or maintain the quality of life for frail elderly. A clear overview of these health care interventions for frail elderly and their effects on quality of life is missing. Purpose To provide a systematic overview of the effect of health care interventions on quality of life of frail elderly. Methods A systematic search was conducted in Embase, Medline (OvidSP), Cochrane Central, Cinahl, PsycInfo and Web of Science, up to and including November 2017. Studies describing health care interventions for frail elderly were included if the effect of the intervention on quality of life was described. The effects of the interventions on quality of life were described in an overview of the included studies. Results In total 4,853 potentially relevant articles were screened for relevance, of which 19 intervention studies met the inclusion criteria. The studies were very heterogeneous in the design: measurement of frailty, health care intervention and outcome measurement differ. Health care interventions described were: multidisciplinary treatment, exercise programs, testosterone gel, nurse home visits and acupuncture. Seven of the nineteen intervention studies, describing different health care interventions, reported a statistically significant effect on subdomains of quality of life, two studies reported a statistically significant effect of the intervention on the overall quality of life score. Ten studies reported no statistically significant difference between the intervention and control groups. Conclusion Reported effects of health care interventions on frail elderly persons’ quality of life are inconsistent, with most of the studies reporting no differences between the intervention and control groups. As the number of frail elderly persons in the population will continue to grow, it will be important to continue the search for effective health care interventions. Alignment of studies in design and outcome measurements is needed.
MULTIFILE
Background: Family quality of life (FQoL) of families that have a child with severe to profound intellectual disabilities (SPID) is an important and emerging concept, however, related variables are inconclusive.Aim: To gain a better understanding of variables related to the FQoL of families that have a child with SPID, variables related to the FQoL of families that have a child with intellectual disabilities (ID) were systematically reviewed.Methods and procedures: A search strategy was performed in five databases. Critical appraisal tools were employed to evaluate the quality of both quantitative and qualitative studies. Data extraction and synthesis occurred to establish general study characteristics, variables, and theoretical concepts. Variables were categorised into four key concepts of the FQoL: systemic concepts, performance concepts, family-unit concepts and individual-member concepts.Outcomes and results: A total of 40 studies were retrieved with 98 variables. Quality scores ranged from 7 to 13 (quantitative) and 5 to 13 (qualitative) out of 13 and 14 points, respectively. Five out of the 40 studies (13%) focused on individuals with SPID. Variables related positively or negatively to the FQoL, and were categorised within systemic concepts (n = 3); performance concepts (n = 11); family-unit concepts (n = 26); and individual-member concepts (n = 58).Conclusions and implications: Several variables were found to be (inter)related to the FQoL of families that have a child with ID. A contrasting picture emerged regarding the impact of a disability in relation to transitional phases. However, studies which include families of children with SPID were minimal, therefore, it remained ambiguous to what extent the identified variables apply to these families.
DOCUMENT
Huntington’s disease (HD) and various spinocerebellar ataxias (SCA) are autosomal dominantly inherited neurodegenerative disorders caused by a CAG repeat expansion in the disease-related gene1. The impact of HD and SCA on families and individuals is enormous and far reaching, as patients typically display first symptoms during midlife. HD is characterized by unwanted choreatic movements, behavioral and psychiatric disturbances and dementia. SCAs are mainly characterized by ataxia but also other symptoms including cognitive deficits, similarly affecting quality of life and leading to disability. These problems worsen as the disease progresses and affected individuals are no longer able to work, drive, or care for themselves. It places an enormous burden on their family and caregivers, and patients will require intensive nursing home care when disease progresses, and lifespan is reduced. Although the clinical and pathological phenotypes are distinct for each CAG repeat expansion disorder, it is thought that similar molecular mechanisms underlie the effect of expanded CAG repeats in different genes. The predicted Age of Onset (AO) for both HD, SCA1 and SCA3 (and 5 other CAG-repeat diseases) is based on the polyQ expansion, but the CAG/polyQ determines the AO only for 50% (see figure below). A large variety on AO is observed, especially for the most common range between 40 and 50 repeats11,12. Large differences in onset, especially in the range 40-50 CAGs not only imply that current individual predictions for AO are imprecise (affecting important life decisions that patients need to make and also hampering assessment of potential onset-delaying intervention) but also do offer optimism that (patient-related) factors exist that can delay the onset of disease.To address both items, we need to generate a better model, based on patient-derived cells that generates parameters that not only mirror the CAG-repeat length dependency of these diseases, but that also better predicts inter-patient variations in disease susceptibility and effectiveness of interventions. Hereto, we will use a staggered project design as explained in 5.1, in which we first will determine which cellular and molecular determinants (referred to as landscapes) in isogenic iPSC models are associated with increased CAG repeat lengths using deep-learning algorithms (DLA) (WP1). Hereto, we will use a well characterized control cell line in which we modify the CAG repeat length in the endogenous ataxin-1, Ataxin-3 and Huntingtin gene from wildtype Q repeats to intermediate to adult onset and juvenile polyQ repeats. We will next expand the model with cells from the 3 (SCA1, SCA3, and HD) existing and new cohorts of early-onset, adult-onset and late-onset/intermediate repeat patients for which, besides accurate AO information, also clinical parameters (MRI scans, liquor markers etc) will be (made) available. This will be used for validation and to fine-tune the molecular landscapes (again using DLA) towards the best prediction of individual patient related clinical markers and AO (WP3). The same models and (most relevant) landscapes will also be used for evaluations of novel mutant protein lowering strategies as will emerge from WP4.This overall development process of landscape prediction is an iterative process that involves (a) data processing (WP5) (b) unsupervised data exploration and dimensionality reduction to find patterns in data and create “labels” for similarity and (c) development of data supervised Deep Learning (DL) models for landscape prediction based on the labels from previous step. Each iteration starts with data that is generated and deployed according to FAIR principles, and the developed deep learning system will be instrumental to connect these WPs. Insights in algorithm sensitivity from the predictive models will form the basis for discussion with field experts on the distinction and phenotypic consequences. While full development of accurate diagnostics might go beyond the timespan of the 5 year project, ideally our final landscapes can be used for new genetic counselling: when somebody is positive for the gene, can we use his/her cells, feed it into the generated cell-based model and better predict the AO and severity? While this will answer questions from clinicians and patient communities, it will also generate new ones, which is why we will study the ethical implications of such improved diagnostics in advance (WP6).
Promoting entrepreneurship is an enabler of smart, sustainable and inclusive growth and it is one objective EU regions have pursued since the EC included it into 2020 Strategy. Entrepreneurship development has economic and social benefits, since it is not only a driving force for job creation, competitiveness and growth; it also contributes to personal fulfillment and to achieve social objectives. That is why the EU encourages entrepreneurial initiatives and to unlock the growth potential of businesses and citizens. However, only a 37% of Europeans (Eurobarometer 2012) would like to be self-employed. The Entrepreneurship Action Plan adopted by the EC in 2013 to reignite Europe’s entrepreneurial spirit includes initiatives for educating young people on entrepreneurship. To ensure that EU economy remains globally competitive, young generations of Europeans need to be inspired to develop their entrepreneurial mindset. EU 2020 Action Plan argues that young people benefitting of a specialised entrepreneurial education are more likely to start-up a business and to better tackle challenges in their professional career and life in general. Hence, there is good reason to ensure better quality of entrepreneurial education. Most approaches in recent years have focused on improving the skills or competences youngsters should obtain only within the education system. However, an integrated approach is needed, where the school, their friends, family and the social environment, shall play each one a relevant role, contributing to generate a more adequate atmosphere to boost their entrepreneurial mindsets, intrapreneurial attitudes and innovation capacities. This project will identify and exchange – through a quadruple helix approach- good practices for creating friendlier entrepreneurial ecosystems and actions to boost entrepreneurship in young people mindsets. The good practices and lessons learnt will be transferred into Action Plans to be included in regional policies.
Human kind has a major impact on the state of life on Earth, mainly caused by habitat destruction, fragmentation and pollution related to agricultural land use and industrialization. Biodiversity is dominated by insects (~50%). Insects are vital for ecosystems through ecosystem engineering and controlling properties, such as soil formation and nutrient cycling, pollination, and in food webs as prey or controlling predator or parasite. Reducing insect diversity reduces resilience of ecosystems and increases risks of non-performance in soil fertility, pollination and pest suppression. Insects are under threat. Worldwide 41 % of insect species are in decline, 33% species threatened with extinction, and a co-occurring insect biomass loss of 2.5% per year. In Germany, insect biomass in natural areas surrounded by agriculture was reduced by 76% in 27 years. Nature inclusive agriculture and agri-environmental schemes aim to mitigate these kinds of effects. Protection measures need success indicators. Insects are excellent for biodiversity assessments, even with small landscape adaptations. Measuring insect biodiversity however is not easy. We aim to use new automated recognition techniques by machine learning with neural networks, to produce algorithms for fast and insightful insect diversity indexes. Biodiversity can be measured by indicative species (groups). We use three groups: 1) Carabid beetles (are top predators); 2) Moths (relation with host plants); 3) Flying insects (multiple functions in ecosystems, e.g. parasitism). The project wants to design user-friendly farmer/citizen science biodiversity measurements with machine learning, and use these in comparative research in 3 real life cases as proof of concept: 1) effects of agriculture on insects in hedgerows, 2) effects of different commercial crop production systems on insects, 3) effects of flower richness in crops and grassland on insects, all measured with natural reference situations