Het is de hoogste tijd dat Nederland, België en Duitsland gezamenlijk in actie komen voor hun ARRRA-regio. “Dat ze de klimaatambities voor de industrie in lijn brengen met de beschikbaarheid van schone energie en bijbehorende infrastructuur tegen redelijke kosten. Niet alleen in het eindplaatje, maar juist ook tijdens de tussenperiode. Opdat de ARRRA-industrie de kans krijgt haar innovatiekracht te benutten en klimaatvriendelijke productiemethoden te ontwikkelen. Zo niet, dan is veel van de industrie in de ARRRA regio gedoemd te verdwijnen naar elders. Met alle gevolgen van dien.”
LINK
Kijkend naar de ontwikkelingen in de medische en farmaceutische zorg, concludeer ik dat het belang van innovaties niet altijd in overeenstemming is met de snelheid waarmee die innovaties hun plek krijgen in het standaardhandelingsarsenaal van zorgverleners. Veranderingen in de zorg gaan vaak langzaam en doorbraken worden slecht herkend. De vraag is hoe dit komt. Er blijken vele factoren van invloed op het mogelijke succes van een innovatie. Van groot belang is het inzicht dat innoveren meer is dan iets bedenken en dan maar aannemen dat het wel zal worden opgepikt door de (potentiële) doelgroep. Het aan de man brengen (‘dissemineren’) van de innovatie is mede bepalend voor een succesvolle implementatie. In de farmaceutische zorg is voor deze overbruggingsfunctie een belangrijke rol weggelegd voor de farmakundige. Mijn lectoraat, dat is gekoppeld aan de opleiding Farmakunde, zal zich bezighouden met het onderzoek naar het proces om farmaceutische innovaties te dissemineren. In deze openbare les licht ik de context en consequenties van dit onderzoeksthema nader toe. Ik begin met een uitleg van de farmakundige en diens toegevoegde waarde in het werkveld (hoofdstuk 1), en vervolg met een korte beschrijving van recente veranderingen binnen de zorg (hoofdstuk 2). In het begeleiden van die veranderingen ligt een belangrijke meerwaarde van de farmakundige, en de missie van dit lectoraat. Daarna (hoofdstuk 3) beschouwen we het innoveren in de (farmaceutische) gezondheidszorg in meer detail. Hoofdstuk 4 geeft diverse handvatten voor het kiezen van de juiste interventies om de afstand tussen de innovator en de toekomstige gebruiker te overbruggen en zodoende de toegang voor de gebruiker tot de innovatie te verbeteren. De keuze van de onderzoekslijnen van mijn lectoraat, zoals in hoofdstuk 5 beschreven, is daarvan afgeleid
DOCUMENT
In dit afscheidscollege kijk ik terug op de afgelopen vier jaren en schets ik een beeld van de mogelijkheden voor de toekomst. De ondertitel van het afscheidscollege luidt: Van het lectoraat ‘Disseminatie van Farmaceutische Innovaties’ naar het lectoraat ‘Innovatie van Zorgprocessen in de Farmacie’. Het betoog begint met een overzicht van de ontwikkelingen in de (farmaceutische) zorg sinds de start van ons lectoraat (Hoofdstuk 2, Van waar komen we?). Daarna vat ik samen wat we zelf hebben gepresteerd (Hoofdstuk 3, Wat hebben we bereikt?). In hoofdstuk 4 werp ik een blik op de toekomst (Waar gaan we heen?). En ik kan het niet laten ook nog een paar gedachten te formuleren over hoe we die toekomst vorm kunnen geven (Hoofdstuk 5: Hoe gaan we erheen?). Een samenvatting staat in hoofdstuk 6 en ik eindig met een kort dankwoord in hoofdstuk 7.
DOCUMENT
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
De zogenaamde Buoyant Density Separation (BDS) is een technologie waarbij in een inert oplosmiddel, bij voorkeur in waterig milieu, scheiding wordt bewerkstelligd door verschillen in de dichtheid van mengsels van deeltjes. Door de dichtheid van een oplosmiddel zodanig in te stellen dat deze tussen de dichtheid van de te scheiden componenten in ligt wordt bewerkstelligd dat de lichtere component gaat drijven (float) en de zwaardere component gaat zinken (sink). Verder kan, door de dichtheid van het oplosmiddel gedoseerd te verlagen steeds opnieuw de lichtere, drijvende fractie of de zwaardere fractie afgescheiden worden en kunnen er, indien gewenst, meerdere fracties met een verschillende dichtheden (= componenten) worden geïsoleerd.In het project wordt een energiezuinige, duurzame, goed opschaalbare en niet destructieve scheidingstechnologie ontwikkeld en hiermee draagt het bij aan de gewenste biobased en circulaire transitie, alsmede de gestelde klimaatdoelstellingen. Laagwaardige grondstofstromen worden, waar mogelijk, middels de BDS techniek gescheiden in hoogwaardige fracties voor tal van commerciële applicaties. De gebruikte oplosmiddelen, bij voorkeur waterig, worden gerecycled en gereed gemaakt voor hergebruik. Ook voor proposities in de farmaceutische industrie wordt zowel de energiebehoefte alsmede de hoeveelheid gevormde waste/afval verminderd en biedt de technologie tevens de mogelijkheid om bestaande medicijnen op een betere manier te synthetiseren en/of te ontwikkelen. Het project draagt bij aan de RIS3 doelstellingen gezondheid, voedsel en duurzaamheid.De ontwikkelde kennis en kunde moet resulteren in het significant versterken van het Noordelijk bedrijfsleven. Naast dat de concurrentiepositie van de bij het voorstel betrokken bedrijven versterkt wordt moet de kennis en kunde ook opengesteld worden voor bij voorkeur uit het Noorden afkomstige grondstoffen leveranciers (agro-grondstoffen) en bedrijven die geïnteresseerd zijn in de uit deze grondstoffen te verkrijgen fracties (cross sectorale ketens). De aangeboorde kennis, ook voortkomend uit de kennisinstellingen, moet resulteren in behoud en het versterken van “human capital” voor onze regio.
Lupineschillen (lupine zaadhuid) zijn een reststroom van lupineverwerking. Lupineschillen vormen 25% van de totale biomassa van de lupineboon, terwijl sojaschillen slechts 5% van de totale biomassa van de sojaboon zijn. Er zijn onvoldoende rendabele toepassingen voor lupineschillen waardoor de rentabiliteit van de lupine supply chain achter blijft bij de veel competitievere soja supply chain. Lupineschillen zijn rijk aan de actieve stof lupeol waarvan recent farmaceutische en cosmetische anti-aging werkingen zijn vastgesteld, waaronder anti-tumor werking. Lupeol komt naast lupine ook in hoge concentraties voor in berkenbast. Berkenbast bevat bovendien een chemische voorloper van lupeol namelijk betuline. Recentelijk is er een chemische syntheseroute ontwikkeld voor lupeol op basis van betuline. Als deze syntheseroute kosteneffectief is, dan kan deze route de ontwikkeling van nieuwe toepassingen van lupineschillen blokkeren.Het doel van deze studie is het opstellen van een circulair ontwerp voor lupeol extractie uit twee reststromen met behulp van superkritische CO2 extractie en de kosteneffectiviteit van deze circulaire ontwerpen met elkaar vergelijken voor het selecteren van het meest optimale proces voor lupeol extractie en/of synthese. Bovendien worden mogelijke cosmetische anti-aging effecten van lupeol getest.Met behulp van superkritische CO2 extractie is het mogelijk om lupeol kosteneffectief uit lupineschillen te extraheren. De alternatieve syntheseroute van lupeol uit betuline zoals deze in de wetenschappelijke literatuur was gepubliceerd bleek niet reproduceerbaar te zijn. Patentliteratuur leverde een reproduceerbare syntheseroute. Vergelijking van de twee routes was nog niet mogelijk vanwege de lage omzetting efficiënties van de syntheseroute. Daarnaast zijn er mogelijke intellectuele eigendom issues. De effectiviteit van lupeol is in vitro en in vivo getest. Hieruit bleek dat lupeol in tegenstelling tot de literatuur minimale effecten had op huidcellen. De huidelasticiteit bij proefpersonen nam enigszins toe na gebruik van een cosmetische formulering met lupeol.Uit onze studie is gebleken dat we kosteneffectief lupeol kunnen extraheren met behulp van superkritische CO2, dat de alternatieve routes voor lupeol synthese nog niet mogelijk zijn en dat we enige anti-aging effecten van lupeol hebben kunnen vinden bij toepassing in cosmetische producten.