Background: Due to multimorbidity and geriatric problems, older people often require both psychosocial and medical care. Collaboration between medical and social professionals is a prerequisite to deliver high-quality care for community-living older people. Effective, safe, and person-centered care relies on skilled interprofessional collaboration and practice. Little is known about interprofessional education to increase interprofessional collaboration in practice (IPCP) in the context of community care for older people. This study examines the feasibility of the implementation of an IPCP program in three community districts and determines its potential to increase interprofessional collaboration between primary healthcare professionals caring for older people. Method: A feasibility study was conducted to determine the acceptability and feasibility of data collection and analysis regarding interprofessional collaboration in network development. A questionnaire was used to measure the learning experience and the acquisition of knowledge and skills regarding the program. Network development was assessed by distributing a social network survey among professionals attending the program as well as professionals not attending the program at baseline and 5.5 months after. Network development was determined by calculating the number, reciprocity, value, and diversity of contacts between professionals using social network analysis. Results: The IPCP program was found to be instructive and the knowledge and skills gained were applicable in practice. Social network analysis was feasible to conduct and revealed a spill-over effect regarding network development. Program participants, as well as non-program participants, had larger, more reciprocal, and more diverse interprofessional networks than they did before the program. Conclusions: This study showed the feasibility of implementing an IPCP program in terms of acceptability, feasibility of data collection, and social network analysis to measure network development, and indicated potential to increase interprofessional collaboration between primary healthcare professionals. Both program participants and non-program participants developed a larger, more collaborative, and diverse interprofessional network.
DOCUMENT
"The World of the [open] innovator" described the background of the revolution we are in in innovation and what the consequences are for innovation, changing towards design driven open innovation. We reframed innovation to meet new needs and values of companies and organizations in our work field. We do not take this light-hearted. We know the field of innovation and used our experience and conversation with stakeholders to come up with the insight of The [open] Innovator. What strengthened us were reactions from companies and organization we asked to cocreate or participate. There seemed to be an instant recognition and appeal to our vision and approach. But we also realize that we are in the stage of prototyping and we need you, as our lead users to be critical, yet to trust us. You, being an [open] innovator, will do great wonders, because you will be taught to deal with this uncertainty and dig in new, unknown situations or problems. You will learn the tools for research, for communication, for visualization. You will become a cooperative, open-minded problem solver. You will be able - with all the skills and tools we will provide you - to make the difference. But we need you to reflect upon your progress and needs; help us to get an insight in to your uncertainties, values and unmet needs, to enable us to improve our thinking and teaching. However, innovation can only be learned by doing! Start cracking, start experimenting, start having fun. Welcome to the future, that has just started.
DOCUMENT
Sodium-glucose co-transporter 2 (SGLT2) inhibitors, including canagliflozin, reduce the risk of cardiovascular and kidney outcomes in patients with and without type 2 diabetes, albeit with a large interindividual variation. The underlying mechanisms for this variation in response might be attributed to differences in SGLT2 occupancy, resulting from individual variation in plasma and tissue drug exposure and receptor availability. We performed a feasibility study for the use of [18F]canagliflozin positron emission tomography (PET) imaging to determine the association between clinical canagliflozin doses and SGLT2 occupancy in patients with type 2 diabetes. We obtained two 90-minute dynamic PET scans with diagnostic intravenous [18F]canagliflozin administration and a full kinetic analysis in 7 patients with type 2 diabetes. Patients received 50, 100, or 300 mg oral canagliflozin (n = 2:4:1) 2.5 hours before the second scan. Canagliflozin pharmacokinetics and urinary glucose excretion were measured. The apparent SGLT2 occupancy was derived from the difference between the apparent volume of distribution of [18F]canagliflozin in the baseline and post-drug PET scans. Individual canagliflozin area under the curve from oral dosing until 24-hours (AUCP0-24h) varied largely (range 1,715–25,747 μg/L*hour, mean 10,580 μg/L*hour) and increased dose dependently with mean values of 4,543, 6,525, and 20,012 μg/L*hour for 50, 100, and 300 mg, respectively (P = 0.046). SGLT2 occupancy ranged between 65% and 87%, but did not correlate with canagliflozin dose, plasma exposure, or urinary glucose excretion. We report the feasibility of [18F]canagliflozin PET imaging to determine canagliflozin kidney disposition and SGLT2 occupancy. This suggests the potential of [18F]canagliflozin as a tool to visualize and quantify clinically SGLT2 tissue binding.
DOCUMENT