From the article: "Whilst the importance of online peer feedback and writing argumentative essays for students in higher education is unquestionable, there is a need for further research into whether and the extent to which female and male students differ with regard to their argumentative feedback, essay writing, and content learning in online settings. The current study used a pre-test, post-test design to explore the extent to which female and male students differ regarding their argumentative feedback quality, essay writing and content learning in an online environment. Participants were 201 BSc biotechnology students who wrote an argumentative essay, engaged in argumentative peer feedback with learning partners in the form of triads and finally revised their original argumentative essay. The findings revealed differences between females and males in terms of the quality of their argumentative feedback. Female students provided higher-quality argumentative feedback than male students. Although all students improved their argumentative essay quality and also knowledge content from pre-test to post-test, these improvements were not significantly different between females and males. Explanations for these findings and recommendations are provided"
MULTIFILE
Background: The importance of clarifying goals and providing process feedback for student learning has been widely acknowledged. From a Self-Determination Theory perspective, it is suggested that motivational and learning gains will be obtained because in well-structured learning environments, when goals and process feedback are provided, students will feel more effective (need for competence), more in charge over their own learning (need for autonomy) and experience a more positive classroom atmosphere (need for relatedness). Yet, in spite of the growing theoretical interest in goal clarification and process feedback in the context of physical education (PE), little experimental research is available about this topic. Purpose: The present study quasi-experimentally investigated whether the presence of goal clarification and process feedback positively affects students’ need satisfaction and frustration. Method: Twenty classes from five schools with 492 seventh grade PE students participated in this quasi-experimental study. Within each school, four classes were randomly assigned to one of the four experimental conditions (n = 121, n = 117, n = 126 and n = 128) in a 2 × 2 factorial design, in which goal clarification (absence vs. presence) and process feedback (absence vs. presence) were experimentally manipulated. The experimental lesson consisted of a PE lesson on handstand (a relatively new skill for seventh grade students), taught by one and the same teacher who went to the school of the students to teach the lesson. Depending on the experimental condition, the teacher either started the lesson explaining the goals, or refrained from explaining the goals. Throughout the lesson the teacher either provided process feedback, or refrained from providing process feedback. All other instructions were similar across conditions, with videos of exercises of differential levels of difficulty provided to the students. All experimental lessons were observed by a research-assistant to discern whether manipulations were provided according to a condition-specific script. One week prior to participating in the experimental lesson, data on students’ need-based experiences (i.e. quantitatively) were gathered. Directly after students’ participation in the experimental lesson, data on students’ perceptions of goal clarification and process feedback, need-based experiences (i.e. quantitatively) and experiences in general (i.e. qualitatively) were gathered. Results and discussion: The questionnaire data and observations revealed that manipulations were provided according to the lesson-scripts. Rejecting our hypothesis, quantitative analyses indicated no differences in need satisfaction across conditions, as students were equally satisfied in their need for competence, autonomy and relatedness regardless of whether the teacher provided goal clarification and process feedback, only goal clarification, only process feedback or none. Similar results were found for need frustration. Qualitative analyses indicated that, in all four conditions, aspects of the experimental lesson made students feel more effective, more in charge over their own learning and experience a more positive classroom atmosphere. Our results suggest that under certain conditions, lessons can be perceived as highly need-satisfying by students, even if the teacher does not verbally and explicitly clarify the goals and/ or provides process feedback. Perhaps, students were able to self-generate goals and feedback based on the instructional videos.
DOCUMENT
This study investigated to what degree lesson-to-lesson variability in teachers' goal clarification and process feedback explains variability in secondary students’ motivational correlates. Students (N=570, 24 classes) completed questionnaires at six occasions. Multilevel regression analyses showed that relations between perceived process feedback and experienced need satisfaction (i.e., competence, autonomy and relatedness) were conditional on perceived goal clarification. No such interaction effects between process feedback and goal clarification were found for need frustration (i.e., experiencing failure, feeling pushed to achieve goals, feeling rejected). In general, when students perceived more process feedback or goal clarification, students experienced more competence, autonomy and relatedness satisfaction. Yet, when perceiving very high levels of process feedback, additional benefits of goal clarification were no longer present (and vice versa). In lessons in which students perceived goals to be less clear, they experienced more need frustration. No associations were found between process feedback and need frustration.
DOCUMENT
In dit project leggen we de basis voor een discursief psychologisch onderzoek naar een beeld-BEP leeromgeving die helpt patronen in beeldgebruik te ontdekken, te zien uit welke elementen de verschillende beelden bestaan en ingrediënten biedt voor een reactie in beeld. We kijken met nadruk naar het beeld aspect van online uitingen in een gesprekscontext en de patronen die zich daarin voordoen, de dynamiek en het verloop van gesprekken.
Receiving the first “Rijbewijs” is always an exciting moment for any teenager, but, this also comes with considerable risks. In the Netherlands, the fatality rate of young novice drivers is five times higher than that of drivers between the ages of 30 and 59 years. These risks are mainly because of age-related factors and lack of experience which manifests in inadequate higher-order skills required for hazard perception and successful interventions to react to risks on the road. Although risk assessment and driving attitude is included in the drivers’ training and examination process, the accident statistics show that it only has limited influence on the development factors such as attitudes, motivations, lifestyles, self-assessment and risk acceptance that play a significant role in post-licensing driving. This negatively impacts traffic safety. “How could novice drivers receive critical feedback on their driving behaviour and traffic safety? ” is, therefore, an important question. Due to major advancements in domains such as ICT, sensors, big data, and Artificial Intelligence (AI), in-vehicle data is being extensively used for monitoring driver behaviour, driving style identification and driver modelling. However, use of such techniques in pre-license driver training and assessment has not been extensively explored. EIDETIC aims at developing a novel approach by fusing multiple data sources such as in-vehicle sensors/data (to trace the vehicle trajectory), eye-tracking glasses (to monitor viewing behaviour) and cameras (to monitor the surroundings) for providing quantifiable and understandable feedback to novice drivers. Furthermore, this new knowledge could also support driving instructors and examiners in ensuring safe drivers. This project will also generate necessary knowledge that would serve as a foundation for facilitating the transition to the training and assessment for drivers of automated vehicles.
Despite the recognized benefits of running for promoting overall health, its widespread adoption faces a significant challenge due to high injury rates. In 2022, runners reported 660,000 injuries, constituting 13% of the total 5.1 million sports-related injuries in the Netherlands. This translates to a disturbing average of 5.5 injuries per 1,000 hours of running, significantly higher than other sports such as fitness (1.5 injuries per 1,000 hours). Moreover, running serves as the foundation of locomotion in various sports. This emphasizes the need for targeted injury prevention strategies and rehabilitation measures. Recognizing this social issue, wearable technologies have the potential to improve motor learning, reduce injury risks, and optimize overall running performance. However, unlocking their full potential requires a nuanced understanding of the information conveyed to runners. To address this, a collaborative project merges Movella’s motion capture technology with Saxion’s expertise in e-textiles and user-centered design. The result is the development of a smart garment with accurate motion capture technology and personalized haptic feedback. By integrating both sensor and actuator technology, feedback can be provided to communicate effective risks and intuitive directional information from a user-centered perspective, leaving visual and auditory cues available for other tasks. This exploratory project aims to prioritize wearability by focusing on robust sensor and actuator fixation, a suitable vibration intensity and responsiveness of the system. The developed prototype is used to identify appropriate body locations for vibrotactile stimulation, refine running styles and to design effective vibration patterns with the overarching objective to promote motor learning and reduce the risk of injuries. Ultimately, this collaboration aims to drive innovation in sports and health technology across different athletic disciplines and rehabilitation settings.