BACKGROUND: Approximately 5%-10% of elementary school children show delayed development of fine motor skills. To address these problems, detection is required. Current assessment tools are time-consuming, require a trained supervisor, and are not motivating for children. Sensor-augmented toys and machine learning have been presented as possible solutions to address this problem.OBJECTIVE: This study examines whether sensor-augmented toys can be used to assess children's fine motor skills. The objectives were to (1) predict the outcome of the fine motor skill part of the Movement Assessment Battery for Children Second Edition (fine MABC-2) and (2) study the influence of the classification model, game, type of data, and level of difficulty of the game on the prediction.METHODS: Children in elementary school (n=95, age 7.8 [SD 0.7] years) performed the fine MABC-2 and played 2 games with a sensor-augmented toy called "Futuro Cube." The game "roadrunner" focused on speed while the game "maze" focused on precision. Each game had several levels of difficulty. While playing, both sensor and game data were collected. Four supervised machine learning classifiers were trained with these data to predict the fine MABC-2 outcome: k-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), and support vector machine (SVM). First, we compared the performances of the games and classifiers. Subsequently, we compared the levels of difficulty and types of data for the classifier and game that performed best on accuracy and F1 score. For all statistical tests, we used α=.05.RESULTS: The highest achieved mean accuracy (0.76) was achieved with the DT classifier that was trained on both sensor and game data obtained from playing the easiest and the hardest level of the roadrunner game. Significant differences in performance were found in the accuracy scores between data obtained from the roadrunner and maze games (DT, P=.03; KNN, P=.01; LR, P=.02; SVM, P=.04). No significant differences in performance were found in the accuracy scores between the best performing classifier and the other 3 classifiers for both the roadrunner game (DT vs KNN, P=.42; DT vs LR, P=.35; DT vs SVM, P=.08) and the maze game (DT vs KNN, P=.15; DT vs LR, P=.62; DT vs SVM, P=.26). The accuracy of only the best performing level of difficulty (combination of the easiest and hardest level) achieved with the DT classifier trained with sensor and game data obtained from the roadrunner game was significantly better than the combination of the easiest and middle level (P=.046).CONCLUSIONS: The results of our study show that sensor-augmented toys can efficiently predict the fine MABC-2 scores for children in elementary school. Selecting the game type (focusing on speed or precision) and data type (sensor or game data) is more important for determining the performance than selecting the machine learning classifier or level of difficulty.
DOCUMENT
Smart tangible toys, designed for hand manipulation, can transform fine motor skills assessment into enjoyable activities which are engaging for children to play (partially) unsupervised. Such toys can support school teachers and parents for early detection of deficiencies in motor skills development of children, as well as objectively monitor the progress of skills development over time. To make a game enjoyable for children with different skills level, these smart toys could offer an adaptive game play. In this paper we describe the design and deployment of a digital board game, equipped with sensors, which we use to explore the potential of using smart toys for fine motor skills assessment in children.
DOCUMENT
Starting with finger foods is recommended from 7 months in typically developing children. However, information on which finger foods are appropriate and accepted for which age is largely lacking. The purpose of this exploratory study was to determine whether chewing skills, hand motor skills, and other personal and food characteristics influence the intake of finger foods in early life. Thirty children aged 12 to 18 months participated in this study. All children were offered four finger foods in a fixed order on four consecutive days at their home. Two finger foods varied mainly in texture (fresh banana vs. freeze-dried banana) and two other finger foods mainly in shape (stick vs. heart shaped cracker). The intake was measured after ten minutes of exposure to the product. Chewing skills were measured with the Mastication Observation and Evaluation instrument and fine motor skills with selected items of the Bayley-III-NL scales. The results suggest that texture but not shape was found to affect intake, as fresh banana was eaten more than freeze-dried banana and the consumed quantity of the two crackers was not significantly different. Hand motor skills affected the intake of fresh banana only and chewing skills did not affect intake of any of the finger foods. Age and experience with chewable foods were associated with an increased intake of some of the finger foods. In conclusion, the intake of the four finger foods in this study was found to be mainly affected by texture, hand motor skills, age and experience.
DOCUMENT
When children are not ready to write, assessment of fine motor coordination may be indicated. The purpose of this study was to evaluate which fine motor test, the Nine-Hole Peg Test (9-HPT) or the newly developed Timed Test of In-Hand Manipulation (Timed-TIHM), correlates best with handwriting readiness as measured by the Writing Readiness Inventory Tool In Context-Task Performance (WRITIC-TP). From the 119 participating children, 43 were poor performers. Convergent validity of the 9-HPT and Timed-TIHM with WRITIC-TP was determined, and test-retest reliability of the Timed-TIHM was examined in 59 children. The results showed that correlations of the 9-HPT and Timed-TIHM with the WRITIC-TP were similar (rs = -0.40). The 9-HPT and the complex rotation subtask of the Timed-TIHM had a low correlation with the WRITIC-TP in poor performers (rs = -0.30 and -0.32 respectively). Test-retest reliability of the Timed-TIHM was significant (Intraclass Correlation Coefficient = 0.71). Neither of these two fine motor tests is appeared superior. They both relate to different aspects of fine motor performance. One of the limitations of the methodology was unequal numbers of children in subgroups. It is recommended that further research is indicated to evaluate the relation between development of fine motor coordination and handwriting proficiency, on the Timed-TIHM in different age groups.
DOCUMENT
AimTo investigate: (a) language difficulties in children with developmental coordination disorder (DCD), and (b) motor difficulties in children with developmental language disorder (DLD).MethodIn this systematic review, PubMed, CINAHL, PsycINFO, and Embase were searched to identify peer-reviewed studies. Two researchers independently identified, screened and evaluated the methodological quality of the included studies following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). For objective (a), we combined the terms: “developmental coordination disorder” AND “language skills” AND “children”. For objective (b) we combined the terms: “developmental language disorder” AND “motor skills” AND “children”.ResultsTen studies on language skills in children with DCD and 34 studies on motor skills in children with DLD are included, most with relatively good methodological quality. The results for language comprehension and production in children with DCD are contradictory, but there is evidence that children with DCD have communication and phonological problems. Evidence for general motor problems in children with DLD is consistent. Studies report problems in balance, locomotor, and fine motor skills in children with DLD. Evidence for aiming and catching skills is inconsistent.InterpretationThe findings of this systematic review highlight the co-occurrence of language impairments in children with DCD and motor impairments in children with DLD. Healthcare professionals involved in the assessment and diagnosis of children with DCD or DLD should be attentive to this co-occurrence. In doing so, children with DCD and DLD can receive optimal interventions to minimize problems in their daily life.
DOCUMENT
Movement is an essential part of our lives. Throughout our lifetime, we acquire many different motor skills that are necessary to take care of ourselves (e.g., eating, dressing), to work (e.g., typing, using tools, care for others) and to pursue our hobbies (e.g., running, dancing, painting). However, as a consequence of aging, trauma or chronic disease, motor skills may deteriorate or become “lost”. Learning, relearning, and improving motor skills may then be essential to maintain or regain independence. There are many different ways in which the process of learning a motor skill can be shaped in practice. The conceptual basis for this thesis was the broad distinction between implicit and explicit forms of motor learning. Physiotherapists and occupational therapists are specialized to provide therapy that is tailored to facilitate the process of motor learning of patients with a wide range of pathologies. In addition to motor impairments, patients suffering from neurological disorders often also experience problems with cognition and communication. These problems may hinder the process of learning at a didactic level, and make motor learning especially challenging for those with neurological disorders. This thesis focused on the theory and application of motor learning during rehabilitation of patients with neurological disorders. The overall aim of this thesis was to provide therapists in neurological rehabilitation with knowledge and tools to support the justified and tailored use of motor learning in daily clinical practice. The thesis is divided into two parts. The aim of the first part (Chapters 2‐5) was to develop a theoretical basis to apply motor learning in clinical practice, using the implicit‐explicit distinction as a conceptual basis. Results of this first part were used to develop a framework for the application of motor learning within neurological rehabilitation (Chapter 6). Afterwards, in the second part, strategies identified in first part were tested for feasibility and potential effects in people with stroke (Chapters 7 and 8). Chapters 5-8 are non-final versions of an article published in final form in: Chapter 5: Kleynen M, Moser A, Haarsma FA, Beurskens AJ, Braun SM. Physiotherapists use a great variety of motor learning options in neurological rehabilitation, from which they choose through an iterative process: a retrospective think-aloud study. Disabil Rehabil. 2017 Aug;39(17):1729-1737. doi: 10.1080/09638288.2016.1207111. Chapter 6: Kleynen M, Beurskens A, Olijve H, Kamphuis J, Braun S. Application of motor learning in neurorehabilitation: a framework for health-care professionals. Physiother Theory Pract. 2018 Jun 19:1-20. doi: 10.1080/09593985.2018.1483987 Chapter 7: Kleynen M, Wilson MR, Jie LJ, te Lintel Hekkert F, Goodwin VA, Braun SM. Exploring the utility of analogies in motor learning after stroke: a feasibility study. Int J Rehabil Res. 2014 Sep;37(3):277-80. doi: 10.1097/MRR.0000000000000058. Chapter 8: Kleynen M, Jie LJ, Theunissen K, Rasquin SM, Masters RS, Meijer K, Beurskens AJ, Braun SM. The immediate influence of implicit motor learning strategies on spatiotemporal gait parameters in stroke patients: a randomized within-subjects design. Clin Rehabil. 2019 Apr;33(4):619-630. doi: 10.1177/0269215518816359.
DOCUMENT
This dissertation describes the dynamics of motor competence (MC) development from early childhood (EC) to middle childhood (MCD). Being motor competent in early childhood creates a window of opportunity for taking part in physical activities later in childhood and adulthood. However, there is a worrying trend in MC development during childhood. This trend shows that, last decades, children struggle more with executing fundamental movement skills (e.g., hopping, dribbling, balancing, throwing and catching) and that general motor fitness levels of children are decreasing. A delay in MC development during childhood has a negative impact on the general health status later in life. Therefore, it is important to support young children to develop their MC. The main research question of this dissertation was: How can motor competence be promoted as efficient and effective as possible in early childhood by sport professionals? Chapter 2 showed that MC development from early to middle childhood proceeds with variation. The majority of the children had a stable ‘normal’ or increasing ‘high’ development of MC over time. However, a concerning level of 18.2% of the young children showed an undesirable pattern (i.e., a negative course of motor development over time and a ‘low’ MQ score during the final measurement) of MC development as they grow older. Chapters 3 and 4 showed that characteristics of the social and physical home environment and direct living environment were associated with MC disparities during early childhood. Both parenting practices and parental PA-involved behaviours were relevant modifiable factors. For example, stronger parental active transportation routines and PA parental practices decreased the odds of a lower MC. Also, the presence of a home garden decreased the likelihood of children being classified as low motor competent. With regard to gender differences, girls showed lower levels of MC compared to boys. Special attention should also be paid to obese children as they experience less enjoyment of PA compared with normal weighted peers (chapter 3). Excessive body weight is also a risk factor associated with an undesirable MC development, just like lack of sports participation (chapter 5). Intervention strategies (chapter 6) incorporating all fundamental movement skills with a great variety of activities for at least 3 to 4 times a week seem to be most effective to stimulate MC development. Methodological and didactical aspects like deliberate practice and play should be implemented together with training and coaching sessions for sport professionals to increase the effectiveness of the interventions. With respect to the efficiency of promoting MC development, policy makers and sport professionals should pay more attention on early childhood and especially focus on those children at risk for a delay in MC development. So, overweighted children and children not participating in organized sports should be given more attention by sport professionals. Additionally, the effectiveness of MC interventions can be increased by making use of the home environment, childcare context and school context of young children. Sport professionals can act as connectors between parents, school, and sports clubs.
DOCUMENT
Objectives: The development of children’s motor competence (MC) from early to middle childhood can follow different courses. The purpose of this longitudinal study was to describe and quantify the prevalence of patterns of MC development from early to middle childhood and to identify undesirable patterns. Design: The study used a longitudinal design. Data were collected in three consecutive years, between February 2020 (T0) and May 2022 (T2). Methods: A total of 1128 typically developing Dutch children (50.2% male) between 4 and 6 years old at baseline (M = 5.35 ± 0.69 years) participated in this study. MC was measured with the Athletic Skills Track and converted into Motor Quotient (MQ) scores. To convert all individual MQ scores into meaningful patterns of MC development, changes in MQ categories were analyzed between the different timepoints. Results: A total of 11 different developmental patterns were found. When grouping the different patterns, five undesirable patterns were found with 18.2% of the children, showing an undesirable pattern of MC development between T0 and T2. The patterns of motor development of the other children showed a normal or fluctuating course. Conclusions: There is a lot of variation in MC in early and middle childhood. A substantial percentage of young children showed undesirable MC developmental patterns emphasizing the need for early and targeted interventions.
DOCUMENT
Motor learning is particularly challenging in neurological rehabilitation: patients who suffer from neurological diseases experience both physical limitations and difficulties of cognition and communication that affect and/or complicate the motor learning process. Therapists (e.g.,, physiotherapists and occupational therapists) who work in neurorehabilitation are therefore continuously searching for the best way to facilitate patients during these intensive learning processes. To support therapists in the application of motor learning, a framework was developed, integrating knowledge from the literature and the opinions and experiences of international experts. This article presents the framework, illustrated by cases from daily practice. The framework may assist therapists working in neurorehabilitation in making choices, implementing motor learning in routine practice, and supporting communication of knowledge and experiences about motor learning with colleagues and students. The article discusses the framework and offers suggestions and conditions given for its use in daily practice.
DOCUMENT
In this paper, we present a framework for gamified motor learning through the use of a serious game and high-fidelity motion capture sensors. Our implementation features an Inertial Measurement Unit and a set of Force Plates in order to obtain real-time, high-frequency measurements of patients' core movements and centre of pressure displacement during physical rehabilitation sessions. The aforementioned signals enable two mechanisms, namely a) a game avatar controlled through patient motor skills and b) a rich data stream for post-game motor performance analysis. Our main contribution is a fine-grained processing pipeline for sensor signals, enabling the extraction of a reliable and accurate mapping between patient motor movements, in-game avatar controls and overall motor performance. Moreover, we discuss the potential of this framework towards the implementation of personalised therapeutic sessions and present a pilot study conducted in that direction.
LINK