Large floating projects have the potential to overcome the challenge of land scarcity in urban areas and offer opportunities for energy and food production, or even for creating sustainable living environments. However, they influence the physical, chemical, biological and ecological characteristics of water bodies. The interaction of the floating platforms affect multiple complex aquatic processes, and the potential (negative/positive) effects are not yet fully understood. Managing entities currently struggle with lack of data and knowledge that can support adequate legislation to regulate future projects. In the Netherlands the development of small scale floating projects is already present for some years (e.g. floating houses, restaurants, houseboats), and more recently several large scale floating photovoltaic plants (FPV) have been realized. Several floating constructions in the Netherlands were considered as case-studies for a data-collection campaign. To obtain data and images from underneath floating buildings, underwater drones were equipped with cameras and sensors. The drones were used in multiple locations to scan for differences in concentrations of basic water quality parameters (e.g. dissolved oxygen, electrical conductivity, algae, light intensity) from underneath/near the floating structures, which were then compared with data from locations far from the influence of the buildings. Continuous data was also collected over several days using multi-parameter water quality sensors permanently installed under floating structures. Results show some differences in concentrations of water quality parameters between open water and shaded areas were detected, and some interesting relations between parameters and local characteristics were identified. Recommendations are given, in order to minimise the undesired impacts of floating platforms. Considering the complexity of the interactions between water quality parameters and the influence of the surrounding environment it is recommended to continue and to improve the monitoring campaign (e.g. include new parameters).
DOCUMENT
The need of an adaptive sustainable solution for the increased land scarcity, growing urbanization, climate change and flood risks resulted in the concept of the floating urbanization. In The Netherlands this new type of housing attracted the interest of local authorities, municipalities and water boards. Moreover, plans to incorporate floating houses in the urban planning have already been developed. However, the knowledge gap regarding the potential effect on the water quality halts the further development of the floating houses. This paper shows the results of a water quality measurement campaign, as part of the national program “Knowledge for climate”, at a small floating houses project in Delft and serves as a case study for addressing the environmental-ecological knowledge gap on this topic.
DOCUMENT
Floating urbanization is a promising solution to reduce the vulnerability of cities against climate change, population growth or land scarcity. Although this type of construction introduces changes to aquatic systems, there is a lack of research studies addressing potential impacts. Water quality data collected under/near floating structures were compared with the corresponding parameters measured at the same depth at open water locations by (i) performing scans with underwater drones equipped with in situ sensors and video cameras and (ii) fixing two sets of continuous measuring in situ sensors for a period of several days/months at both positions. A total of 18 locations with different types of floating structures were considered in this study. Results show small differences in the measured parameters, such as lower dissolved oxygen concentrations or higher temperature measured underneath the floating structures. The magnitudes of these differences seem to be linked with the characteristics and type of water system. Given the wide variety and types of water bodies considered in this study, results suggest that water quality is not critically affected by the presence of the floating houses. Underwater images of biofouling and filter feeders illustrate the lively ecosystems that can emerge shortly after the construction of floating buildings.
DOCUMENT
Sea Lettuce, Ulva spp. is a versatile and edible green seaweed. Ulva spp is high in protein, carbohydrates and lipids (respectively 7%-33%; 33%-62% and 1%-3% on dry weight base [1, 2]) but variation in these components is high. Ulva has the potential to produce up to 45 tons DM/ha/year but 15 tons DM/ha/year is more realistic.[3, 4] This makes Ulva a possible valuable resource for food and other applications. Sea Lettuce is either harvested wild or cultivated in onshore land based aquaculture systems. Ulva onshore aquaculture is at present implemented only on a few locations in Europe on commercial scale because of limited knowledge about Ulva biology and its optimal cultivation systems but also because of its unfamiliarity to businesses and consumers. The objective of this project is to improve Ulva onshore aquaculture by selecting Ulva seed material, optimizing growth and biomass production by applying ecophysiological strategies for nutrient, temperature, microbiome and light management, by optimizing pond systems eg. attached versus free floating production and eventually protoype product development for feed, food and cosmetics.
Klimaatverandering en zeespiegelstijging zet de schaarse ruimte in Nederland verder onder druk. Klimaatrobuuste drijvende ontwikkelingen kunnen hiervoor een oplossing bieden maar kunnen nog niet op de benodigde schaal worden toegepast. Hiervoor is meer kennis nodig over de techniek en governance van drijvend bouwen en ook over de ecologische effecten. Het Floating Future project richt zich op de multidisciplinaire uitdagingen van drijvende bouwen op het vlak van bestuur en regelgeving en technische en ecologische uitdagingen. Hiermee bieden we een klimaatbestendige oplossing voor ruimtegebrek in de Nederlandse delta voor wonen, duurzame energie en logistiek. Dit unieke multidisciplinaire consortium heeft de capaciteit om de resterende barrières te doorbreken.
The global market for the industrial manufacturing of recombinant proteins (RPS) is steadily increasing and demand will keep rising in years to come. Currently, RPs are already an integral part of disease therapeutics, agriculture and the chemical industry and RP manufacturing methods rely heavily on host systems such as prokaryotes and, to a lesser extent, mammalian, yeast and plant cells. When comparing these host systems, all have their specific strengths and weaknesses and numerous challenges remain to improve protein manufacturing on an industrial scale. In this project, GLO Biotics proposes an innovative plant-based RP expression platform with the potential of significantly reducing costs and process requirements compared to the current state-of-the-art systems. Specifically, this novel concept is based on the use of coconut water as a natural, cell-free ‘protein production factory’. Coconut water in nuts aged 4-6 months is composed of free-floating cell nuclei devoid of cell walls, and it has been demonstrated these nuclei can express foreign proteins. Compared to existing platforms, the relative ease of delivering foreign protein-coding genes into this system, as well as the ease of recovery of the produced protein, potentially offers an innovative platform with great commercial attractiveness. In summary, the aim of this project is to provide a proof-of-concept for coconut water as a novel and competitive RP production platform by demonstrating the production and recovery of several commercially available RPs. To this end, GLO Biotics intends to collaborate with Zuyd University of Applied Sciences (Zuyd) and the Aachen Maastricht Institute for Biobased Materials (AMIBM) in demonstrating the potential of the ‘GLO-Conuts’ expression system. As a consortium, Zuyd and GLO Biotics will utilize their shared experience in molecular engineering and DNA vector technology and AMIBM will bring their expertise in plant-based RP production and recovery.