Many delta cities worldwide are dealing with the same kind of problems: rising of the sea level, land subsidence, scarcity of land and illegal housing. Multiple land use is one of these solutions that will help to reduce flooding and scarcity of land. An example of multiple land use is a floating community. This research used Semarang as location for the research into the social acceptance of floating houses. The data in this study were obtained through literature study and survey among inhabitants. The social acceptance of the inhabitants is determined with 35 respondents that have been done in the area of Kemijen, Semarang. In order to determine the social acceptance of floating houses, there are elements used, namely: knowledge of floating houses, perception of risk, urgency, implementation, chose for a floating house, requirements, positive and negative elements, self-sufficient system. According to the result of research, the social acceptance of the inhabitants is quite low, but there is potential because they see positive elements in a floating house. Low social acceptance is caused by the fact that the concept of floating houses is not well known in this community. With raising awareness on the challenges and informing the community on the possibilities on floating infrastructure will result in higher social acceptance.
DOCUMENT
Many delta cities worldwide are dealing with the same kind of problems: rising of the sea level, land subsidence, scarcity of land and illegal housing. Multiple land use is one of these solutions that will help to reduce flooding and scarcity of land. An example of multiple land use is a floating community. This research used Semarang as location for the research into the social acceptance of floating houses. The data in this study were obtained through literature study and survey among inhabitants. The social acceptance of the inhabitants is determined with 35 respondents that have been done in the area of Kemijen, Semarang. In order to determine the social acceptance of floating houses, there are elements used, namely: knowledge of floating houses, perception of risk, urgency, implementation, chose for a floating house, requirements, positive and negative elements, self-sufficient system. According to the result of research, the social acceptance of the inhabitants is quite low, but there is potential because they see positive elements in a floating house. Low social acceptance is caused by the fact that the concept of floating houses are not well known in this community. With raising awareness on the challenges and informing the community on the possibilities on floating infrastructure will result in higher social acceptance.
MULTIFILE
Large floating projects have the potential to overcome the challenge of land scarcity in urban areas and offer opportunities for energy and food production, or even for creating sustainable living environments. However, they influence the physical, chemical, biological and ecological characteristics of water bodies. The interaction of the floating platforms affect multiple complex aquatic processes, and the potential (negative/positive) effects are not yet fully understood. Managing entities currently struggle with lack of data and knowledge that can support adequate legislation to regulate future projects. In the Netherlands the development of small scale floating projects is already present for some years (e.g. floating houses, restaurants, houseboats), and more recently several large scale floating photovoltaic plants (FPV) have been realized. Several floating constructions in the Netherlands were considered as case-studies for a data-collection campaign. To obtain data and images from underneath floating buildings, underwater drones were equipped with cameras and sensors. The drones were used in multiple locations to scan for differences in concentrations of basic water quality parameters (e.g. dissolved oxygen, electrical conductivity, algae, light intensity) from underneath/near the floating structures, which were then compared with data from locations far from the influence of the buildings. Continuous data was also collected over several days using multi-parameter water quality sensors permanently installed under floating structures. Results show some differences in concentrations of water quality parameters between open water and shaded areas were detected, and some interesting relations between parameters and local characteristics were identified. Recommendations are given, in order to minimise the undesired impacts of floating platforms. Considering the complexity of the interactions between water quality parameters and the influence of the surrounding environment it is recommended to continue and to improve the monitoring campaign (e.g. include new parameters).
DOCUMENT
HZ University of Applied Sciences (HZ) together with Dutch SME’s Recycled Island Foundation and Upp! Upcycling Plastic will be executing a feasibility study into the most efficient and effective collection system of floating macro-plastics in the Mekong delta in Vietnam (floating passive litter traps, litter fishing, or other). All three project partners are (separately) already active in The Netherlands, Belgium, Indonesia and Vietnam in the field of environmental (practice based) research and development (among others in Living Lab settings with local universities and communities). This project aims at expanding cooperation between all three project partners including partners’ partners in the living lab network in Vietnam. The results of the feasibility study enables the research group Building with Nature of HZ acquiring experience in and expertise of a possible new research topic “reducing macro-plastics in water systems and re-using it in an effective and efficient manner”. Moreover, the results of the project will enable both SME to expand their export opportunities and business to Asian countries, which severely suffer from increasing plastic waste.