Urban flooding has become a key issue for many cities around the world. The project ‘INnovations for eXtreme Climatic EventS’ (INXCES) developed new innovative technological methods for risk assessment and mitigation of extreme hydroclimatic events and optimization of urban water-dependent ecosystem services at the catchment level. DEMs (digital elevation maps) have been used for more than a decade now as quick scan models to indicate locations that are vulnerable to urban flooding. In the last years the datasets are getting bigger and multidisciplinary stakeholders are becoming more demanding and require faster and more visual results. In this paper, the development and practical use of DEMs is exemplified by the case study of Bergen (Norway), where flood modelling using DEM is carried out in 2017 and in 2009. We can observe that the technology behind tools using DEMs is becoming more common and improved, both with a higher accuracy and a higher resolution. Visualization tools are developed to raise awareness and understanding among different stakeholders in Bergen and around the world. We can conclude that the evolution of DEMS is successful in handling bigger datasets and better (3D) visualization of results with a higher accuracy and a higher resolution. With flood maps the flow patterns of stormwater are analysed and locations are selected to implement (sub-)surface measures as SuDS (Sustainable Urban Drainage systems) that store and infiltrate stormwater. In the casestudy Bergen the following (sub-)surface SuDS have been recently implemented with the insights of DEMS: settlement storage tank, rainwater garden, swales, permeable pavement and I/T-drainage. The research results from the case study Bergen will be shared by tools to stimulate international knowledge exchange. New improved DEMs and connected (visualization) tools will continue to play an important role in (sub-)surface flood management and climate resilient urban planning strategies around the world.
DOCUMENT
The phenomena of urbanization and climate change interact with the growing number of older people living in cities. One of the effects of climate change is an increased riverine flooding hazard, and when floods occur this has a severe impact on human lives and comes with vast economic losses. Flood resilience management procedures should be supported by a combination of complex social and environmental vulnerability assessments. Therefore, new methodologies and tools should be developed for this purpose. One way to achieve such inclusive procedures is by incorporating a social vulnerability evaluation methodology for environmental and flood resilience assessment. These are illustrated for application in the Polish city of Wrocław. Socio-environmental vulnerability mapping, based on spatial analyses using the poverty risk index, data on the ageing population, as well as the distribution of the areas vulnerable to floods, was conducted with use of a location intelligence system combining Geographic Information System (GIS) and Business Intelligence (BI) tools. The new methodology allows for the identification of areas populated by social groups that are particularly vulnerable to the negative effects of flooding. C 2018 SETAC Original Publication: Integr Environ Assess Manag 2018;14:592–597. DOI: https://doi.org/10.1002/ieam.4077
MULTIFILE
As a consequence of climate change and urbanization, many cities will have to deal with more flooding and extreme heat stress. This paper presents a framework to maximize the effectiveness of Nature-Based Solutions (NBS) for flood risk reduction and thermal comfort enhancement. The framework involves an assessment of hazards with the use of models and field measurements. It also detects suitable implementation sites for NBS and quantifies their effectiveness for thermal comfort enhancement and flood risk reduction. The framework was applied in a densely urbanized study area, for which different small-scale urban NBS and their potential locations for implementation were assessed. The overall results show that the most effective performance in terms of flood mitigation and thermal comfort enhancement is likely achieved by applying a range of different measures at different locations. Therefore, the work presented here shows the potential of the framework to achieve an effective combination of measures and their locations, which was demonstrated on the case of the Sukhumvit area in Bangkok (Thailand). This can be particularly suitable for assessing and planning flood mitigation measures in combination with heat stress reduction.
DOCUMENT
Nature-based coastal management is mainstream in the Netherlands. About 12 Mm3 of sand is added annually to the coast to compensate coastal erosion and maintain high safety levels against flooding. This amount will likely increase to compensate for accelerated sea level rise. (Mega-)Nourishments may also strengthen and support biodiversity and recreational values of the coastal zone and associated wetland areas. However, the ecological and societal impacts of mega-nourishments on open coasts are not well established, hampering comparison of pros and cons of different nourishment strategies. This knowledge gap is largely due to the lack of suitable methods to monitor and predict the spreading of nourishment sand along the coast and into tidal basins. Ameland Inlet provides us with a unique opportunity to develop and test novel approaches to fill this knowledge gap in close collaboration with our consortium and stakeholders. In 2018 the first tidal inlet mega-nourishment (5 Mm3) was placed in the Ameland Inlet ebb-tidal delta, and geomorphic and biotic responses nearby are closely monitored in the Kustgenese 2.0 and SEAWAD programmes. Our research builds on the insights gained, will gather new data to investigate off-site effects (linked with SIBES/SIBUS sampling), and build a common knowledge-base with stakeholders. We will develop novel luminescence-based methods to monitor the temporal and spatial dispersal of nourishment sand. These insights will be combined with an inventory of off-site biotic responses to nourishment and the role biota play in the mixing of nourishment sand with natural sediments. Combined results will be used to develop and validate models to trace transport paths of individual grains and improve morphodynamic predictions. Throughout the project, we will collaborate and interact intensely with coastal managers and (local) stakeholders to address concerns and exchange insights, creating a platform for co-assessment and optimization of nourishment designs and strategies.