We investigate hydrology during a past climate slightly warmer than the present: the last interglacial (LIG). With daily output of preindustrial and LIG simulations from eight new climate models we force hydrological model PCR‐GLOBWB and in turn hydrodynamic model CaMa‐Flood. Compared to preindustrial, annual mean LIG runoff, discharge, and 100‐yr flood volume are considerably larger in the Northern Hemisphere, by 14%, 25%, and 82%, respectively. Anomalies are negative in the Southern Hemisphere. In some boreal regions, LIG runoff and discharge are lower despite higher precipitation, due to the higher temperatures and evaporation. LIG discharge is much higher for the Niger, Congo, Nile, Ganges, Irrawaddy, and Pearl and lower for the Mississippi, Saint Lawrence, Amazon, Paraná, Orange, Zambesi, Danube, and Ob. Discharge is seasonally postponed in tropical rivers affected by monsoon changes. Results agree with published proxies on the sign of discharge anomaly in 15 of 23 sites where comparison is possible.
DOCUMENT
The phenomena of urbanization and climate change interact with the growing number of older people living in cities. One of the effects of climate change is an increased riverine flooding hazard, and when floods occur this has a severe impact on human lives and comes with vast economic losses. Flood resilience management procedures should be supported by a combination of complex social and environmental vulnerability assessments. Therefore, new methodologies and tools should be developed for this purpose. One way to achieve such inclusive procedures is by incorporating a social vulnerability evaluation methodology for environmental and flood resilience assessment. These are illustrated for application in the Polish city of Wrocław. Socio-environmental vulnerability mapping, based on spatial analyses using the poverty risk index, data on the ageing population, as well as the distribution of the areas vulnerable to floods, was conducted with use of a location intelligence system combining Geographic Information System (GIS) and Business Intelligence (BI) tools. The new methodology allows for the identification of areas populated by social groups that are particularly vulnerable to the negative effects of flooding. C 2018 SETAC Original Publication: Integr Environ Assess Manag 2018;14:592–597. DOI: https://doi.org/10.1002/ieam.4077
MULTIFILE
Urban flooding has become a key issue for many cities around the world. With the continuing effects of climate change, this will become more acute and will add to the serious problems already experienced in dense urban areas. Therefore several international stakeholders are in the need of toolsthat can assess the vulnerability to floods and visualization tools that will contribute to international knowledge exchange. Years ago scientists started to use DEMs (digital elevation maps) as quick scans to indicate locations that are vulnerable to urban flooding and the effect of climate change. Now thedatasets are getting bigger and stakeholders are becoming more demanding and require faster and more visual results. The technology using DEMs is becoming more common and improved, both with a higher accuracy and a higher resolution. As an example the flood modeling using DEMs is comparedfor the case Bergen in Norway (figure 1a and 1b) from 2009 and 2016.
DOCUMENT
Dit project is een haalbaarheidsstudie naar de benodigde eigenschappen van een flood early warning system in het stroomgebied van de Rode Rivier in noordwest Vietnam. In het project wordt zowel de gebiedskennis verzameld als een lokaal netwerk gevormd, zodanig dat een smart sensor system voor waterbeheer ingericht kan worden dat de lokale bevolking in staat stelt om tijdig te anticiperen op plotselinge overstromingen. Door extreme weersituaties die zich regelmatiger voor zullen doen zullen de effecten van overstromingen verergeren. Met name vanwege het zeer korte tijdsbestek waarbinnen overstromingen op kunnen treden, is het voor de bevolking noodzakelijk om zelfstandig hierop te kunnen anticiperen. Door de effecten van klimaatverandering en grootschalige ontbossing is het risico op overstromingen in de gehele regio sterk toegenomen. Daarom zal ook gekeken worden naar de mogelijkheden van opschaling van voornoemd systeem. In dit project wordt ook de basis gelegd voor een nieuw samenwerkingsverband tussen het HAN/VHL lectoraat Sustainable River Management, Eijkelkamp Soil & Water, Prins Land, Water & Food Consult en het World Agroforestry Centre (ICRAF). Deze partners hebben de gedeelde ambitie om een pilot project te realiseren voor een early warning systeem, waarmee op basis van real-time empirische data over neerslag en rivierafvoer automatisch een waarschuwingssignaal naar mobiele telefoons in een bepaald gebied gegenereerd kan worden, zodat de bevolking tijdig maatregelen kan nemen voor evacuatie en/of om ernstige schade te beperken bij verhoogd risico op zogenaamde 'flash floods'. Deze ambitie zal gezamenlijk uitgewerkt worden in een voorstel voor een pilotproject onder bijv. de Partners voor Water regeling.
INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.INXCES will develop new innovative technological methods for risk assessment and mitigation of extreme hydroclimatic events and optimization of urban water-dependent ecosystem services at the catchment level, for a spectrum of rainfall events. It is widely acknowledged that extreme events such as floods and droughts are an increasing challenge, particularly in urban areas. The frequency and intensity of floods and droughts pose challenges for economic and social development, negatively affecting the quality of life of urban populations. Prevention and mitigation of the consequences of hydroclimatic extreme events are dependent on the time scale. Floods are typically a consequence of intense rainfall events with short duration. In relation to prolonged droughts however, a much slower timescale needs to be considered, connected to groundwater level reductions, desiccation and negative consequences for growing conditions and potential ground – and building stability.INXCES will take a holistic spatial and temporal approach to the urban water balance at a catchment scale and perform technical-scientific research to assess, mitigate and build resilience in cities against extreme hydroclimatic events with nature-based solutions.INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.