Making food packaging more sustainable is a complex process. Research has shown that specific knowledge is needed to support packaging developers to holistically improve the sustainability of packaging. Within this study we aim to provide insights in the various tradeoffs designers face with the aim to provide insights for future sustainable food packaging (re)design endeavors. The study consists of analyzing and coding 19 reports in which bachelor students worked on assignments ranging from (1) analyzing the supply chain of a food product-packaging combination to (2) redesigning a specific food packaging. We identified 6 tradeoffs: (1) Perceived Sustainability vs. Achieved Sustainability, (2) Food Waste vs. Sustainability, (3) Branding vs. Sustainability, (4) Product Visibility vs. Sustainability, (5) Costs vs. Sustainability, and (6) Use Convenience vs Sustainability. We compared the six tradeoffs with literature. Two tradeoffs can be seen as additional to topics mentioned within literature, namely product visibility and use convenience. In addition, while preventing food waste is mentioned as an important functionality of food packaging, this functionality seems to be underexposed within practice.
MULTIFILE
Purpose: Food waste occurs in every stage of the supply chain, but the value-added lost to waste is the highest when consumers waste food. The purpose of this paper is to understand the food waste behaviour of consumers to support policies for minimising food waste. Design/methodology/approach: Using the theory of planned behaviour (TPB) as a theoretical lens, the authors design a questionnaire that incorporates contextual factors to explain food waste behaviour. The authors test two models: base (four constructs of TPB) and extended (four constructs of TPB plus six contextual factors). The authors build partial least squares structural equation models to test the hypotheses. Findings: The data confirm significant relationships between food waste and contextual factors such as motives, financial attitudes, planning routines, food surplus, social relationships and Ramadan. Research limitations/implications: The data comes from an agriculturally resource-constrained country: Qatar. Practical implications: Food waste originating from various causes means more food should flow through the supply chains to reach consumers’ homes. Contextual factors identified in this work increase the explanatory power of the base model by 75 per cent. Social implications: Changing eating habits during certain periods of the year and food surplus have a strong impact on food waste behaviour. Originality/value: A country is considered to be food secure if it can provide its citizens with stable access to sufficient, safe and nutritious food. The findings and conclusions inform and impact upon the development of food waste and food security policies.
MULTIFILE
Nearly all waterborne products, such as food, beverages, pharmaceuticals, paints, biological (medical) samples, cosmetics and wood require preservation to prevent decomposition of the product due to microbial growth. Most non-food preservatives such as isothiazolinones, bronopol, and pyrithiones, are derived from oil and are increasingly more strictly regulated due to hazards such as ecotoxicity, sensibilization and development of allergies. The low legally permitted concentrations will not only become too low to realize preservation, they will also induce antimicrobial resistance. A chemical transition towards new, innovative, biobased, and eco-friendly preservatives is therefore required. Wydo NBD is dedicated to research towards sustainable ingredients for waterborne paints. For this, together with the Hanze University, non-hazardous, eco-friendly and biobased natural preservatives will be identified and further developed towards marketable products. The knowledge obtained in this project will contribute to the development of biological (paint) conservatives knowledge and improvement of current production methods of Wydo, with the potential for wider application in food and medical products. This project aims to identify natural antimicrobial additives and consists of three consecutive stages. First, an extensive, unbiased bioinformatics guided literature mining will be performed to find relationships between biological antimicrobial compounds and microbes found in paint. The most promising antimicrobials from this mining will be made available by chemical synthesis. Subsequently, the compounds will be assessed for their potential as novel natural preservatives for waterborne paints, by testing for their antimicrobial activity and stability.
Nearly all waterborne products, such as food, beverages, pharmaceuticals, paints, biological (medical) samples, cosmetics and wood require preservation to prevent decomposition of the product due to microbial growth. Most non-food preservatives such as isothiazolinones, bronopol, and pyrithiones, are derived from oil and are increasingly more strictly regulated due to hazards such as ecotoxicity, sensibilization and development of allergies. The low legally permitted concentrations will not only become too low to realize preservation, they will also induce antimicrobial resistance. A chemical transition towards new, innovative, biobased, and eco-friendly preservatives is therefore required. Wydo NBD is dedicated to research towards sustainable ingredients for waterborne paints. For this, together with the Hanze University, non-hazardous, eco-friendly and biobased natural preservatives will be identified and further developed towards marketable products. The knowledge obtained in this project will contribute to the development of biological (paint) conservatives knowledge and improvement of current production methods of Wydo, with the potential for wider application in food and medical products.This project aims to identify natural antimicrobial additives and consists of three consecutive stages. First, an extensive, unbiased bioinformatics guided literature mining will be performed to find relationships between biological antimicrobial compounds and microbes found in paint. The most promising antimicrobials from this mining will be made available by chemical synthesis. Subsequently, the compounds will be assessed for their potential as novel natural preservatives for waterborne paints, by testing for their antimicrobial activity and stability