Purpose: Food waste occurs in every stage of the supply chain, but the value-added lost to waste is the highest when consumers waste food. The purpose of this paper is to understand the food waste behaviour of consumers to support policies for minimising food waste. Design/methodology/approach: Using the theory of planned behaviour (TPB) as a theoretical lens, the authors design a questionnaire that incorporates contextual factors to explain food waste behaviour. The authors test two models: base (four constructs of TPB) and extended (four constructs of TPB plus six contextual factors). The authors build partial least squares structural equation models to test the hypotheses. Findings: The data confirm significant relationships between food waste and contextual factors such as motives, financial attitudes, planning routines, food surplus, social relationships and Ramadan. Research limitations/implications: The data comes from an agriculturally resource-constrained country: Qatar. Practical implications: Food waste originating from various causes means more food should flow through the supply chains to reach consumers’ homes. Contextual factors identified in this work increase the explanatory power of the base model by 75 per cent. Social implications: Changing eating habits during certain periods of the year and food surplus have a strong impact on food waste behaviour. Originality/value: A country is considered to be food secure if it can provide its citizens with stable access to sufficient, safe and nutritious food. The findings and conclusions inform and impact upon the development of food waste and food security policies.
MULTIFILE
With this project we strived to contribute to structural reduction of post-harvest food losses and food quality improvement in the Kenyan avocado and dairy value chains through the application of technical solutions and tools as well as improved coordination in those food chains. The consortium had four types of partners: 1. Universities (2 Kenyan, 4 Dutch), 2. Private sector actorsin those chains, 3. Organisations supporting those chains, and 4. Network partners. The applied research has been implemented in cooperation with all partners, whereby students at involved universities conducted most of the field studies and all other consortium partners support and interact depending on the phases.The FORQLAB project targeted two areas in Kenya for both commodities, a relatively well-developed chain in the central highlands and a less-develop chain in Western-Kenya. The research methods were the business to business and multi-stakeholder (living lab) approaches to increase the potential for uptake of successful interventions in the chain. The project consisted of four phases: 1. Inventory and inception, 2. Applied research, 3. Spreading research outputs through living lab networks, 4. Translation of project output in curricula and trainings. The outcomes were: two knowledge exchange platforms (Living Labs) supported with some advice for sustainable food loss reduction, a research agenda, proposals for ICT and other tech solutions and an implementation strategy; communication and teaching materials for universities andTVETs; and knowledge transfer and uptake.
MULTIFILE
This study proposes a systematic value chain approach to helping businesses identify and eliminate inefficiencies. The authors have developed a robust framework, which food-sector entrepreneurs can use to increase profitability of an existing business or to create new profitable opportunities. The value chain approach provides win-win opportunities for players within the value chain. To test the robustness of the framework, the authors use food waste as an example of a critical inefficiency and apply it to two different food sector business cases, each operating in diverse conditions. Because the suggested framework addresses the core elements and parameters for the existence and competitiveness of a business, the model can be adapted to other sectors.
By transitioning from a fossil-based economy to a circular and bio-based economy, the industry has an opportunity to reduce its overall CO2 emission. Necessary conditions for effective and significant reductions of CO2-emissions are that effective processing routes are developed that make the available carbon in the renewable sources accessible at an acceptable price and in process chains that produce valuable products that may replace fossil based products. To match the growing industrial carbon demand with sufficient carbon sources, all available circular, and renewable feedstock sources must be considered. A major challenge for greening chemistry is to find suitable sustainable carbon that is not fossil (petroleum, natural gas, coal), but also does not compete with the food or feed demand. Therefore, in this proposal, we omit the use of first generation substrates such as sugary crops (sugar beets), or starch-containing biomasses (maize, cereals).
In the Netherlands, the Agri-Food and Water Top Sectors aim at climate neutral food systems that close loops in the food value chains from farm to fork, based on efficiency of natural resource management, optimum use of food, a reduced use of natural resources and less environmental pressure, and optimum use of residue streams. It is also in their ambitions to promote and market Dutch circular solutions in foreign countries, such as emergent economies. The transition to a circular economy in the food chain in emergent economies requires a radical transformation, in which an integrated approach is required. In this regard, Indonesia strives for green development representing an advantageous market opportunity for Dutch SME’s offering circular innovations on the food value chain. The consortium in this project would like to explore the opportunities for applying integrated approaches contributing to the transition to a circular economy in the food chain of emerging countries, in this case Indonesia, that could open market opportunities in the agri-food sector. The integrated approach includes innovations on effective use of natural resources (e.g., soil and water), innovations on ‘reshaping’ local organization and governance, and innovations on food/streams value chains.
The consortium would like to contribute to structural reduction of post-harvest and food losses and food quality improvement in Kenyan avocado and dairy value chains via the application of technical solutions and tools as well as improved chain governance competences in those food chains. The consortium has four types of partners: 1. Universities (2 Kenyan, 4 Dutch), 2. Private sector actors in those chains, 3. Organisations supporting those chains, and 4. Associate partners which support category 1 to 3 partners through co-financing, advice and reflection. The FORQLAB project targets two areas in Kenya for both commodities, a relatively well-developed chain in the central highlands and a less-develop chain in Western-Kenya. The approach is business to business and the selected regions have great potential for uptake of successful chain innovations as outcome of research results. The results are scalable for other fresh and processed product chains via a living lab network approach. The project consists of 5 work packages (WPs): 1. Inventory , status quo and inception, 2. Applied research, 3. Dissemination of research outputs through living lab networks, 4. Translation of project output in curricula and trainings, and 5. Communication among partners and WPs. The applied research will be implemented in cooperation with all partners, whereby students of the consortium universities will conduct most of the field studies and all other partners support and interact depending on the WPs. The expected outcomes are: two knowledge exchange platforms (Living Labs) supported with hands on sustainable food waste reduction implementation plans (agenda strategy); overview and proposals for ready ICT and other tech solutions; communication and teaching materials for universities and TVETs; action perspectives; and knowledge transfer and uptake.