The metabolic syndrome (MetS) comprises cardiometabolic risk factors frequently found in individuals with obesity. Guidelines to prevent or reverse MetS suggest limiting fat intake, however, lowering carbohydrate intake has gained attention too. The aim for this review was to determine to what extent either weight loss, reduction in caloric intake, or changes in macronutrient intake contribute to improvement in markers of MetS in persons with obesity without cardiometabolic disease. A meta-analysis was performed across a spectrum of studies applying low-carbohydrate (LC) and low-fat (LF) diets. PubMed searches yielded 17 articles describing 12 separate intervention studies assessing changes in MetS markers of persons with obesity assigned to LC (<40% energy from carbohydrates) or LF (<30% energy from fat) diets. Both diets could lead to weight loss and improve markers of MetS. Meta-regression revealed that weight loss most efficaciously reduced fasting glucose levels independent of macronutrient intake at the end of the study. Actual carbohydrate intake and actual fat intake at the end of the study, but not the percent changes in intake of these macronutrients, improved diastolic blood pressure and circulating triglyceride levels, without an effect of weight loss. The homeostatic model assessment of insulin resistance improved with both diets, whereas high-density lipoprotein cholesterol only improved in the LC diet, both irrespective of aforementioned factors. Remarkably, changes in caloric intake did not play a primary role in altering MetS markers. Taken together, these data suggest that, beyond the general effects of the LC and LF diet categories to improve MetS markers, there are also specific roles for weight loss, LC and HF intake, but not reduced caloric intake, that improve markers of MetS irrespective of diet categorization. On the basis of the results from this meta-analysis, guidelines to prevent MetS may need to be re-evaluated.
MULTIFILE
Obesity and other lifestyle-related diseases are, amongst others, the result of an unbalanced diet and lifestyle. Excessive intake of energy, salt, saturated fat and sugar are leading to increased risk of chronic diseases, such as cardiovascular diseases, cancer and diabetes (WHO/FAO). Therefore, a healthier food intake (diet) is needed. But when is a food product healthier? From a nutritional perspective it is clear: the lower the levels of nutrients with a negative public health impact, the better the product fits in a healthy diet. However, when it comes to improving the health impact of the food supply through reformulation, other aspects are important as well. This article describes the ‘framework for product reformulation’, which integrates four essential disciplines: Nutrition & health, Foodtechnology, Legislation and Consumer perspective.
MULTIFILE
Prevention of non-communicable diseases through, among other factors, increasing vegetables and fruit (V&F) intake is a cost-effective strategy for risk reduction but requires behavioral change. Such changes in adolescents benefit from their active involvement. The Food Boost Challenge (FBC) was developed using a participatory action research approach to enhance healthy eating behaviors, namely V&F products among adolescents. The FBC is an innovation process, involving adolescents, (peer) researchers, and food system partners, like non-governmental and commercial organizations. In 2021–2022, 34 partners provided both cash and in-kind contributions to join the FBC community. Phase 1 involved 200 students identifying barriers and drivers for consumption of F&V products among 1000 pre-vocational adolescents, aged 12–20 years. In phase 2, student teams submitted innovative ideas, resulting in 25 concepts fitting into ≥1 of 4 routes: (I) innovative technology for a healthy diet, (II) new food products/concepts for adolescents, (III) hotspots improving the F&V product experience, and (IV) new routes to market. In phase 3, consortia of adolescents, students, and partners were formed to develop 10 selected concepts into prototypes, and phase 4 offered teams a national platform. Results show that the FBC resonates with all stakeholders, generating valuable insights to increase F&V intake. Prototypes in all four routes have been developed. Additionally, other regions in the Netherlands have adopted the FBC approach. Overall, the FBC is an approach that transforms ideas into actionable measures and shows potential to be adapted to promote various healthy eating behaviors among school students.
While the creation of an energy deficit (ED) is required for weight loss, it is well documented that actual weight loss is generally lower than what expected based on the initially imposed ED, a result of adaptive mechanisms that are oppose to initial ED to result in energy balance at a lower set-point. In addition to leading to plateauing weight loss, these adaptive responses have also been implicated in weight regain and weight cycling (add consequences). Adaptions occur both on the intake side, leading to a hyperphagic state in which food intake is favored (elevated levels of hunger, appetite, cravings etc.), as well as on the expenditure side, as adaptive thermogenesis reduces energy expenditure through compensatory reductions in resting metabolic rate (RMR), non-exercise activity expenditure (NEAT) and the thermic effect of food (TEF). Two strategies that have been utilized to improve weight loss outcomes include increasing dietary protein content and increasing energy flux during weight loss. Preliminary data from our group and others demonstrate that both approaches - especially when combined - have the capacity to reduce the hyperphagic response and attenuate reductions in energy expenditure, thereby minimizing the adaptive mechanisms implicated in plateauing weight loss, weight regain and weight cycling. Past research has largely focused on one specific component of energy balance (e.g. hunger or RMR) rather than assessing the impact of these strategies on all components of energy balance. Given that all components of energy balance are strongly connected with each other and therefore can potentially negate beneficial impacts on one specific component, the primary objective of this application is to use a comprehensive approach that integrates all components of energy balance to quantify the changes in response to a high protein and high energy flux, alone and in combination, during weight loss (Fig 1). Our central hypothesis is that a combination of high protein intake and high energy flux will be most effective at minimizing both metabolic and behavioral adaptations in several components of energy balance such that the hyperphagic state and adaptive thermogenesis are attenuated to lead to superior weight loss results and long-term weight maintenance.