The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate.
MULTIFILE
Peat swamp forests in Southeast Asia are under heavy pressure. Deforestation, forest degradation, wildfires, and drainage have damaged or destroyed substantial areas of the once extensive peat swamp forest formations. Several efforts are underway to rehabilitate degraded peat forests areas in order to restore some of the valuable ecosystem services these forested areas once provided. However, these efforts often result in (mixed)-plantations that only partly resemble the original peat forests. Information about these peat swamp forests' complex origin and ecology is needed to improve restoration outcomes further. Our paper analyses historical data from coastal peat swamp forests in Sarawak and Brunei and discusses the potential to use this as the reference value for intact peat forests. We describe the observed stand structure and species composition for pristine peat swamp forest, and we analyze the population structure of three dominant peat swamp forest species: Gonystylus bancanus (ramin), Dactylocladus stenostachys (jongkong) and Shorea albida (alan batu). We compare the historical data with data from recently measured, degraded peat swamp forests. We discuss our results in relation to processes of peat dome formation, nutrient availability and hydrology, and give recommendations for peat swamp forest management and restoration.
MULTIFILE
How do we increase biodiversity in the Netherlands? By working together! What can food forests and restaurants mean for each other? This report focuses on the question: “What is the potential of collaborations between food forests and restaurants in the Netherlands?”Interviews revealed that successful partnerships are based on direct supplier relationships, internal motivation and niche products that create a unique selling point.
MULTIFILE
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols. Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation. The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol. A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols.Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation.The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol.A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.
Indonesia’s peat forests remain severely threatened by forest fires, oil palm plantation development and extractive industries, which leads to biodiversity loss, increased emissions of greenhouse gases, and the marginalization of Indigenous Peoples and local communities. In 2008 the Government of Indonesia introduced the Social Forestry Programme under which Indigenous Peoples and local communities can acquire a 35-year management permit. Since then, about 10 percent of Indonesian State Forest has been designated for community-based forest conservation and restoration initiatives. The devolution of authority to the local level has created a new playing field. The Social Forestry Programme reverses more than a century of centralistic forest policy, and requires a fundamental re-orientation of all actors working in the forestry sector. The central question underlying this proposal is how Dutch civil society organizations (applied universities and NGOs) can effectively support Indigenous Peoples and local communities in the protection and restoration of peat forests in Indonesia. This project aims to set up a Living Lab in Ketapang District in West Kalimantan to study, identify and test novel ways to work together with a variety of stakeholders to effectively conserve and restore peat forest. In Ketapang District, Tropenbos Indonesia has assisted three Village Forest Management Groups (Pematang Gadung, Sungai Pelang and Sungai Besar) in securing a Social Forestry Permit. Students from three Dutch Universities (Van Hall Larenstein, Aeres Hogeschool and Inholland) will conduct research in partnership with students from Universitas Tanjungpura on the integration of local ecological knowledge and technical expertise, on the economic feasibility of community-based forestry enterprises, and on new polycentric governance structures. The results of these studies will be disseminated to policy makers and civil society groups working in Indonesia, using the extensive networks of IUCN NL and Tropenbos Indonesia.