Parents who grew up without digital monitoring have a plethora of parental monitoring opportunities at their disposal. While they can engage in surveillance practices to safeguard their children, they also have to balance freedom against control. This research is based on in-depth interviews with eleven early adolescents and eleven parents to investigate everyday negotiations of parental monitoring. Parental monitoring is presented as a form of lateral surveillance because it entails parents engaging in surveillance practices to monitor their children. The results indicate that some parents are motivated to use digital monitoring tools to safeguard and guide their children, while others refrain from surveillance practices to prioritise freedom and trust. The most common forms of surveillance are location tracking and the monitoring of digital behaviour and screen time. Moreover, we provide unique insights into the use of student tracking systems as an impactful form of control. Early adolescents negotiate these parental monitoring practices, with responses ranging from acceptance to active forms of resistance. Some children also monitor their parents, showcasing a reciprocal form of lateral surveillance. In all families, monitoring practices are negotiated in open conversations that also foster digital resilience. This study shows that the concepts of parental monitoring and lateral surveillance fall short in grasping the reciprocal character of monitoring and the power dynamics in parent-child relations. We therefore propose that monitoring practices in families can best be understood as family surveillance, providing a novel concept to understand how surveillance is embedded in contemporary media practices among interconnected family members.
MULTIFILE
Privacy, copyright, classified documents and state secrets, but also spontaneous network phenomena like flash mobs and hashtag revolutions, reveal one thing – we lost control over the digital world. We experience a digital tailspin, or as Michael Seemann calls it in this essay: a loss of control or Kontrollverlust. Data we never knew existed is finding paths that were not intended and reveals information that we would never have thought of on our own. Traditional institutions and concepts of freedom are threatened by this digital tailspin. But that doesn’t mean we are lost. A new game emerges, where a different set of rules applies. To take part, we need to embrace a new way of thinking and a radical new ethics – we need to search for freedom in completely different places. While the Old Game depended upon top-down hierarchies and a trust in the protective power of state justice systems, the New Game asks you to let go of all these certainties. Strategies to play the game of digital tailspin rely on flexibility, openness, transparency and what is dubbed ‘antifragility’. In Digital Tailspin: Ten Rules for the Internet After Snowden Michael Seemann examines which strategies are most appropriate in the New Game and why.
Highlights−Constitutional freedom of education affects democratic citizenship education policy.−Citizenship education legislation in 2006 and 2007 placed little demands on schools.−Legislation introduced in 2021 has further specified what is expected from schools.−Studies of citizenship education in practice are largely critical of the extentto which schools teach about, through and for democracy.Purpose:This paper discusses developments in citizenship education policy and practice in the Netherlands, and outlines key challenges as faced by the different stakeholders involved.Design/methodology/approach:Our discussion is based on existing research and policy documents in the Netherlands. The authors, from three Dutch universities, are experts in the field of research on citizenship education.Findings:Promoting citizenship education in primary, secondary and vocational tertiary education in the Netherlands has been challenging, particularly in light of the constitutional freedom of education in the Netherlands. Five issues are discussed in this regard: the contents of CE legislation, the normative character of legal requirements, integration of CE legislation in national curriculum aims, clarifying expectations from schools in teaching CE, and teacher education and professionalization.
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
The transition towards an economy of wellbeing is complex, systemic, dynamic and uncertain. Individuals and organizations struggle to connect with and embrace their changing context. They need to create a mindset for the emergence of a culture of economic well-being. This requires a paradigm shift in the way reality is constructed. This emergence begins with the mindset of each individual, starting bottom-up. A mindset of economic well-being is built using agency, freedom, and responsibility to understand personal values, the multi-identity self, the mental models, and the individual context. A culture is created by waving individual mindsets together and allowing shared values, and new stories for their joint context to emerge. It is from this place of connection with the self and the other, that individuals' intrinsic motivation to act is found to engage in the transitions towards an economy of well-being. This project explores this theoretical framework further. Businesses play a key role in the transition toward an economy of well-being; they are instrumental in generating multiple types of value and redefining growth. They are key in the creation of the resilient world needed to respond to the complex and uncertain of our era. Varta-Valorisatielab, De-Kleine-Aarde, and Het Groene Brein are frontrunner organizations that understand their impact and influence. They are making bold strategic choices to lead their organizations towards an economy of well-being. Unfortunately, they often experience resistance from stakeholders. To address this resistance, the consortium in the proposal seeks to answer the research question: How can individuals who connect with their multi-identity-self, (via personal values, mental models, and personal context) develop a mindset of well-being that enables them to better connect with their stakeholders (the other) and together address the transitional needs of their collective context for the emergence of a culture of the economy of wellbeing?
Various companies in diagnostic testing struggle with the same “valley of death” challenge. In order to further develop their sensing application, they rely on the technological readiness of easy and reproducible read-out systems. Photonic chips can be very sensitive sensors and can be made application-specific when coated with a properly chosen bio-functionalized layer. Here the challenge lies in the optical coupling of the active components (light source and detector) to the (disposable) photonic sensor chip. For the technology to be commercially viable, the price of the disposable photonic sensor chip should be as low as possible. The coupling of light from the source to the photonic sensor chip and back to the detectors requires a positioning accuracy of less than 1 micrometer, which is a tremendous challenge. In this research proposal, we want to investigate which of the six degrees of freedom (three translational and three rotational) are the most crucial when aligning photonic sensor chips with the external active components. Knowing these degrees of freedom and their respective range we can develop and test an automated alignment tool which can realize photonic sensor chip alignment reproducibly and fully autonomously. The consortium with expertise and contributions in the value chain of photonics interfacing, system and mechanical engineering will investigate a two-step solution. This solution comprises a passive pre-alignment step (a mechanical stop determines the position), followed by an active alignment step (an algorithm moves the source to the optimal position with respect to the chip). The results will be integrated into a demonstrator that performs an automated procedure that aligns a passive photonic chip with a terminal that contains the active components. The demonstrator is successful if adequate optical coupling of the passive photonic chip with the external active components is realized fully automatically, without the need of operator intervention.