In this paper, we present the challenges, failures and successes on urban freight transportation. We first identify the various involved stakeholders with their interests. Then we evaluate a large number of urban freight transport initiatives and identify lessons learned, which are distinguished in policy, logistics and technology based views. Further, we present a vision for urban freight transportation, which is not only based on the lessons learned, but also on actual market research reports and recent findings.
LINK
The paper discusses the growing importance of urban freight research given the increasing urban population trends. The complexity of urban freight systems means that it is essential for the public and private sectors to work together - one way to achieve this has been through freight partnerships. A short review of freight partnerships highlights the way in which they have fostered mutual understanding among urban freight stakeholders. The literature on shared situational awareness (SSA) and joint knowledge production (JKP) has been adapted to position freight partnerships and to further develop and link these partnerships to the concept of a living laboratory concerned with urban freight transport. This novel application of the living lab concept is introduced. Next, the first phases of a city logistics living lab brought in practice in Rotterdam are shortly mentioned. The living lab concept fits the complexities of the urban freight system well and has been a cornerstone of a recently started major freight project in the EU (CITYLAB). © 2016 Published by Elsevier B.V.
MULTIFILE
The developments of digitalization and automation in freight transport and logistics are expected to speed-up the realization of an adaptive, seamless, connected and sustainable logistics system. CATALYST determines the potential and impact of Connected Automated Transport (CAT) by testing and implementing solutions in a real-world environment. We experiment on smart yards and connected corridors, to answer research questions regarding supply chain integration, users, infrastructure, data and policy. Results are translated to overarching lessons on CAT implementations, and shared with potential users and related communities. This way, CATALYST helps logistic partners throughout the supply chain prepare for CAT and accelerates innovation.
The developments of digitalization and automation in freight transport and logistics are expected to speed-up the realization of an adaptive, seamless, connected and sustainable logistics system. CATALYST determines the potential and impact of Connected Automated Transport (CAT) by testing and implementing solutions in a real-world environment. We experiment on smart yards and connected corridors, to answer research questions regarding supply chain integration, users, infrastructure, data and policy. Results are translated to overarching lessons on CAT implementations, and shared with potential users and related communities. This way, CATALYST helps logistic partners throughout the supply chain prepare for CAT and accelerates innovation.
To reach the European Green Deal by 2050, the target for the road transport sector is set at 30% less CO2 emissions by 2030. Given the fact that heavy-duty commercial vehicles throughout Europe are driven nowadays almost exclusively on fossil fuels it is obvious that transition towards reduced emission targets needs to happen seamlessly by hybridization of the existing fleet, with a continuously increasing share of Zero Emission vehicle units. At present, trailing units such as semitrailers do not possess any form of powertrain, being a missed opportunity. By introduction of electrically driven axles into these units the fuel consumption as well as amount of emissions may be reduced substantially while part of the propulsion forces is being supplied on emission-free basis. Furthermore, the electrification of trailing units enables partial recuperation of kinetic energy while braking. Nevertheless, a number of challenges still exist preventing swift integration of these vehicles to daily operation. One of the dominating ones is the intelligent control of the e-axle so it delivers right amount of propulsion/braking power at the right time without receiving detailed information from the towing vehicle (such as e.g. driver control, engine speed, engine torque, or brake pressure, …etc.). This is required mainly to ensure interoperability of e-Trailers in the fleets, which is a must in the logistics nowadays. Therefore the main mission of CHANGE is to generate a chain of knowledge in developing and implementing data driven AI-based applications enabling SMEs of the Dutch trailer industry to contribute to seamless energetic transition towards zero emission road freight transport. In specific, CHANGE will employ e-Trailers (trailers with electrically driven axle(s) enabling energy recuperation) connected to conventional hauling units as well as trailers for high volume and extreme payload as focal platforms (demonstrators) for deployment of these applications.