INTRODUCTION: The problem of inconsistent terminology in functional capacity evaluation (FCE) has been widely addressed in the international literature. Many different terms seem to be used interchangeably while other terms appear to be interpreted differently. This may seriously hinder FCE research and clinical use. To gain consensus in operational definitions in FCE and conceptual framework to classify terminology used in FCE.METHODS: A Delphi Survey with FCE experts was conducted which consisted of three rounds of questioning, using semi and full structured questions. The expert group was formed from international experts in FCE. Experts were selected if they met any of the following criteria: at least one international publication as first author and one as co-author in the field of FCE; or an individual who had developed an FCE that was subject of investigation in at least one publication in international literature. Consensus of definitions was considered when 75% or more of all experts agreed with a definition.RESULTS: In total, 22 international experts from 6 different countries in Australia, Europe and North America, working in different health related sectors, participated in this study.CONCLUSION: Consensus concerning conceptual framework of FCE was met in 9 out of 20 statements. Consensus on definitions was met in 10 out of 19 definitions. Experts agreed to use the ICF as a conceptual framework in which terminology of FCE should be classified and agreed to use pre-defined terms of the ICF. No consensus was reached about the definition of FCE, for which two potential eligible definitions remained. Consensus was reached in many terms used in FCE. For future research, it was recommended that researchers use these terms, use the ICF as a conceptual framework and clearly state which definition for FCE is used because no definition of FCE was consented.
OBJECTIVES: Patients with hip or knee osteoarthritis (OA) may experience functional limitations in work settings. In the Cohort Hip and Cohort Knee study (CHECK) physical function was both self-reported and measured performance-based, using Functional Capacity Evaluation (FCE). Relations between self-reported scores on SF-36 and WOMAC (Western Ontario and McMaster Arthritis Index, function scales) and FCE performance were studied, and their diagnostic value for clinicians in predicting observed physical work limitations was assessed.METHODS: Ninety-two subjects scored physical function on SF-36 (scale 0-100, 100 indicating the best health level) and WOMAC (scale 0-68, 68 indicates maximum restriction) and performed the FCE. Correlations were calculated between all scores. Cross-tables were constructed using both questionnaires as diagnostic tests to identify work limitations. Subjects lifting <22.5 kg on the FCE-test 'lifting-low' were labeled as having physical work limitations. Diagnostic aspects at different cut-off scores for both questionnaires were analysed.RESULTS: Statistically significant correlations (Spearman's rho 0.34-0.49) were found between questionnaire scores and lifting and carrying tests. Results of a diagnostic cross-table with cut-off point <60 on SF-36 'physical functioning' were: sensitivity 0.34, specificity 0.97 and positive predictive value (PV+) 0.95. Cut-off point > or =21 on WOMAC 'function' resulted in sensitivity 0.51, specificity 0.88 and PV+ 0.88.CONCLUSION: Low self-reported function scores on SF-36 and WOMAC diagnosed subjects with limitations on the FCE. However, high scores did not guarantee performance without physical work limitations. These results are specific to the tested persons with early OA, in populations with a different prevalence of limitations, different diagnostic values will be found. FCE may be indicated to help clinicians to assess actual work capacity.
Background: Lipoedema is a chronic disorder of adipose tissue typically involving an abnormal build-up of fat cells in the legs, thighs and buttocks. Occurring almost exclusively in women, it often co-exists with obesity. Due to an absence of clear objective diagnostic criteria, lipoedema is frequently misdiagnosed as obesity, lymphoedema or a combination of both. The purpose of this observational study was to compare muscle strength and exercise capacity in patients with lipoedema and obesity, and to use the findings to help distinguish between lipoedema and obesity. Design: This cross-sectional, comparative pilot study performed in the Dutch Expertise Centre of Lymphovascular Medicine, Drachten, a secondary-care facility, included 44 women aged 18 years or older with lipoedema and obesity. Twenty-two women with lipoedema (diagnosed according the criteria of Wold et al, 1951) and 22 women with body mass index ≥30kg/m2 (obesity) were include in the study. No interventions were undertaken as part of the study. Results: Muscle strength of the quadriceps was measured with the MicroFET™, and functional exercise capacity was measured with the 6-minute walk test. The group with lipoedema had, for both legs, significantly lower muscle strength (left: 259.9 Newtons [N]; right: 269.7 N; p < 0.001) than the group with obesity. The group with lipoedema had a non-significant, but clinically relevant lower exercise-endurance capacity (494.1±116.0 metres) than the group with obesity (523.9±62.9 metres; p=0.296). Conclusions: Patients with lipoedema exhibit muscle weakness in the quadriceps. This finding provides a potential new criterion for differentiating lipoedema from obesity. We recommend adding measuring of muscle strength and physical endurance to create an extra diagnostic parameter when assessing for lipoedema.
LINK
Direct Air Capture (DAC) technology is necessary to help achieve the EU's 2050 climate goals, since it allows for net-negative emissions. This will be needed to offset historic emissions while working alongside with other CCU technologies. To make DAC technology truly effective, the carbon footprint of the process itself should be as low as possible. This project describes research plans to minimize the DAC carbon footprint (as well as cost per ton of CO2) by developing technology to maximize DAC filter lifetimes. The project outlines a strategic partnership between Skytree, a Dutch DAC start-up, and Dr. Baumgarter’s research group at the University of Amsterdam. Based on Life Cycle Analyses (LCA) performed by Skytree, they have identified that extending the lifetime of DAC filters can lower the overall carbon footprint by 35%. Similarly, Techno-Economic Assessment indicated that this increased lifetime could lower the cost per ton of CO2 by 10%. To achieve this, both parties will develop an indicator technique to accurately describe filter lifetime to allow for data-driven optimized filter maintenance. The indicator development will expand on a patented technology developed by Skytree. The current technology uses a colorimetric dye to qualitatively assess filter capacity. By gaining access to advanced analytical methods built at UvA, this technology can be enhanced to allow for quantitative sorbent capacity and thus lifetime predictions. Since Dr. Baumgartner’s group specializes in building innovative spectroscopic technique that can monitor functional materials during gas sorption processes, the proposed studies will be able to directly and accurately link sorbent capture performance (using IR spectroscopy) with indicator dye intensity (using UV-Vis spectroscopy). This will allow for the fast development of a calibrated filter lifetime indicator. This makes the foreseen research highly practical and impactful, as the results will directly be implemented in commercial DAC/CCU technology.
Regular physical activity is considered to be an important component of a healthy lifestyle that decreases the risk of coronary heart disease, diabetes mellitus type 2, hypertension, colon and breast cancer, obesity and other debilitating conditions. Physical activity can also improve functional capacity and therefore also the quality of life in older adults. Despite all these favorable aspects, a substantial part of the Dutch older adult population is still underactive or even sedentary. To change this for the better, the Groningen Active Living Model (GALM) was developed.Aim of GALM is to stimulate recreational sports activities in sedentary and underactive older adults in the 55-65 age band. After a door-to-door visit as part of an intensive recruitment phase, a fitness test was conducted followed by the GALM recreational sports program. This program was based on principles from evolutionary-biological play theory and insights fromsocial cognitive theory. The program was versatile in nature (e.g. softball, dance, self-defense, swimming, athletics, etc.) in two main ways: a) to improve compliance with the program different sports were offered, which was reported to be more appealing for older adults; b) by aiming at more components of motor fitness (e.g. strength, flexibility, speed, endurance and coordination). Between 1997 and 2005 more than 552,000 persons were visited door-to-door, over 55,700 were tested, and 41,310 participated in the GALM recreational sports program. The aim of the present thesis is to determine the effects of participation in the GALM recreational sports program on physical activity, health and fitness outcomes.Chapter 2 describes the effectiveness of the GALM recruitment in selecting and recruiting sedentary and underactive older adults. Three municipalities in the Netherlands were selected, and in every municipality four neighborhoods were included. Two of each of the four neighborhoods were randomly assigned as intervention and the others as control neighborhoods. In total, 8,504 persons were mailed and received a home visit. During this home visit the GALM recruitment questionnaire was collected on which the selection between sedentary/underactive and physically active older adults was based. Ultimately we succeeded inincluding 12.3% (315 of the 2,551 qualifying) of the older adults, 79.4% of whom could be indeed considered sedentary or underactive. The cost of successfully recruiting an older adult was estimated at $84.To assess the effects of a physical activity intervention on health and fitness and explain the results, it is necessary to know program characteristics regarding frequency, intensity, time and content of the activities. With respect to the GALM recreational sports activity program, the only unknown characteristic was intensity. Chapter 3 describes the intensity of this program systematically. Using heart rate monitors, data of 97 persons (mean age 60.1 yr) were collected in three municipalities. The mean intensity of all 15 GALM sessions was 73.7% of the predicted maximal heart rate. Six percent of the monitored heart rate time could be classified as light, 33% as moderate and 61% as hard. In summary, the GALM recreational sports program meets the 1998 ACSM recommendations for intensity necessary to improve cardiorespiratory fitness.Chapters 4 and 5 describe the effects of 6 and 12 months of participation in the GALM recreational sports program, and 181 persons were followed over time. Results after 6 months revealed only few significant between-group differences favoring the intervention group (i.e. sleep, diastolic blood pressure, perceived fitness score and grip strength). Changes in energyexpenditure for leisure-time physical activities (EELTPA) showed an increase in both study groups. From 6 to 12 months a decrease in EELTPA occurred in the intervention group and an increase in the control group. The significant positive time effects for the health outcomes (diastolic blood pressure, BMI, percentage of body fat) that were found after 6 months were diminishedfrom 6 to 12 months. However, the energy expenditure for recreational sports activities (EERECSPORT) demonstrated a continuous increase over 12 months. Parallel to this, significant main effects for time were found in performance-based fitness outcomes (i.e. simple reaction time, leg strength, flexibility of hamstrings and lower back, and aerobic endurance). After 12 months only a significant between-group difference for flexibility of the hamstrings andlower back was found, favoring the control group. In conclusion, a short-term increase in EELTPA was found with accompanying improvements in health outcomes that more or less disappeared in 6 to 12 months. In the long term, results showed a continuous increase in EERECSPORT and performance-based fitness. This latter increase is probably a reflection of the significantimprovement over time in EERECSPORT and the fact that recreational sports activities are of a higher intensity.Aerobic endurance is regarded as the most important component of motor fitness that is relevant for older adults to function independently. In Chapter 6, the development in aerobic endurance after 18 months of participation in the GALM recreational sports program was assessed by means of changes in heart rate during fixed submaximal exercise. Since both groups were comparable regarding changes in energy expenditure for physical activity after 6 months and testing confirmed this, both groups were combined and considered as one group. Multilevel analyses were conducted and models for change were developed. A significant decrease in heart rate over time was found at all walking speeds (4, 5, 6 and 7 km/h). The average decrease in heart rate was 5.5, 6.0, 10.0 and 9.0 beats/min for the 4, 5, 6 and 7 km/h walking speeds, respectively. The relative decrease varied from 5.1 to 7.4% relative to average heart rates at baseline. These results illustrate that participation in the GALM recreational sports program has a positive significant effect on aerobic endurance, and that the participants are able to perform at submaximal intensity more easily.Based on the overall results it can be concluded that this study contributes to the field in how to effectively recruit sedentary and underactive older adults and stimulate them to become and stay active in recreational sports activities. As far as we know, this recruitment in combination with the recreational sport program is not only unique but also effective toward increasing performance-based fitness in the long term. Short-term effects were found in other leisure-time activities and health outcomes. To further stimulate other leisure-time and probably health outcomes besides the favorable effects that were already seen, additional interventions that pay more attention to behavioral change in terms of how to integrate other activities besides sports activities are recommended.