The municipality of Apeldoorn had polled the interest among its private home-owners to turn their homes energy neutral. Based on the enthusiastic response, Apeldoorn saw the launch of the Energy Apeldoorn (#ENEXAP) in 2011. Its goal was to convert to it technically and financially possible for privately owned homes to be refurbished and to energy neutral, taking the residential needs and wishes from occupants as the starting point. The project was called an Expedition, because although the goal was clear, the road to get there wasn’t. The Expedition team comprised businesses, civil-society organisations, the local university of applied sciences, the municipality of Apeldoorn, and of course, residents in a central role. The project was supported by Platform31, as part of the Dutch government’s Energy Leap programme. The #ENEXAP involved 38 homes, spread out through Apeldoorn and surrounding villages. Even though the houses were very diverse, the group of residents was quite similar: mostly middle- aged, affluent people who highly value the environment and sustainability. An important aspect of the project was the independent and active role residents played. In collaboration with businesses and professionals, through meetings, excursions, workshops and by filling in a step- by-step plan on the website, the residents gathered information about their personal situation, the energy performance of their home and the possibilities available for them to save and generate energy themselves. Businesses were encouraged to develop an integrated approach for home-owners, and consortia were set up by businesses to develop the strategy, products and services needed to meet this demand. On top of making minimal twenty from the thirty-eight houses in the project energy neutral, the ultimate goal was to boost the local demand for energy- neutral refurbishment and encourage an appropriate supply of services, opening up the (local) market for energy neutral refurbishment. This paper will reflect on the outcomes of this collective in the period 2011-2015.
DOCUMENT
Key takeaways from the project underscore the importance of fostering long-term collaborations between technical experts, communities, and institutional partners. By integrating technical innovation with human-centred design, the SUSTENANCE project has not only advanced renewable energy adoption but also established a framework for empowering communities to actively participate in sustainable energy transitions. Moving forward, the lessons learned, and solutions developed provide a solid foundation for addressing future challenges in energy system decarbonization and resilience.
MULTIFILE
Lectorale redeboekje naar aanleiding van de intrede in het lectoraat Systeemintegratie in de energietransitie
MULTIFILE
The future energy system could benefit from the integration of the independent gas, heat and electricity infrastructures. In addition to an increase in exergy efficiency, such a Hybrid Energy Network (HEN) could support the increase of intermittent renewable energy sources by offering increased operational flexibility. Nowadays, the expectations on Natural Gas resources forecast an increase in the application of Liquefied Natural Gas (LNG), as a means of storage and transportation, which has a high exergy value due to the low temperature. Therefore, we analysed the integration of a decentralized LNG regasification with a CHP (Waste-to-Energy) plant, to determine whether the integration could offer additional operational flexibility for the future energy network with intermittent renewable energy sources, under optimized exergy efficient conditions. We compared the independent system with two systems integrated by means of 1) Organic Rankine Cycle and 2) Stirling Engine using the cold of the LNG, that we analysed using a simplified deterministic model based on the energy hub concept. We use the hourly measured electricity and heat demand patterns for 200 households with 35% of the households producing electricity from PV according to a typical measured solar insolation pattern in The Netherlands. We found that for both systems the decentralized LNG regasification integrated with the W2E plant affects the imbalance of the system for electricity and heat, due to the additional redundant paths to produced electricity. The integration of the systems offers additional operational flexibility depending on the means of integration and its availability to produce additional energy carriers. For our future work, we will extend the model, taking into account the variability and randomness in the different parameters, which may cause significant changes in the performance and reliability of the model.
DOCUMENT
During the opening of the Hanze Energy Transition Centre or EnTranCe (2015-10-13) posters were on display for the King and for the public. During the opening these posters where accompanied by the researchers to explain their research in more detail if questions did arise.
DOCUMENT
Peer-to-peer (P2P) energy trading has been recognized as an important technology to increase the local self-consumption of photovoltaics in the local energy system. Different auction mechanisms and bidding strategies haven been investigated in previous studies. However, there has been no comparatively analysis on how different market structures influence the local energy system’s overall performance. This paper presents and compares two market structures, namely a centralized market and a decentralized market. Two pricing mechanisms in the centralized market and two bidding strategies in the decentralized market are developed. The results show that the centralized market leads to higher overall system self-consumption and profits. In the decentralized market, some electricity is directly sold to the grid due to unmatchable bids and asks. Bidding strategies based on the learning algorithm can achieve better performance compared to the random method.
DOCUMENT
The transformation from the current energy system to a decentralized renewable energy system requires the transformation of communities into energy neutral or even energy producing communities. Increasingly, citizens become 'prosumers' and pool their resources to start a local energy initiative. In this paper we present an in-depth study of networks that recently developed, which challenge the established way of centralized decision-making on energy resources. Many local communities are eager to promote sustainable energy production, to use local financial resources for the local community and to employ democratic governance of energy production and supply. Furthermore, we study how these co-operations are linked to local, regional and national networks for community energy. We use both Actor-Network Theory (ANT) and Social Movement Theory (SMT) to investigate the initiatives, as this allows a dynamic analysis of collective strategies. We discuss the obduracy of the energy system and how this system is challenged by new connections between communities and global networks and by new types of energy providers that are rooted in social networks. Furthermore, we draw attention to the way community energy networks provide a social innovation while realizing a decentralized and decarbonized energy system.
DOCUMENT
The research explored how a Dutch energy cluster embedded within a larger context of European and global developments reflected complex dynamics due to changes in its context. The case study explored Energy Valley of the Netherlands, a peripheral region that meets the challenge of energy transition, regional development and national economic interests. The research engaged complex adaptive systems approach to gain insights into complex cluster dynamics to contribute to cluster study and policy.The research captured insights into increased complexity of an energy cluster due to energy transition and other developments in the cluster context, exacerbated by differences in perceptions and responses of stakeholders to the new challenges. Findings on cluster developments included insights into cluster context, cluster condition, cluster dynamics and cluster transformations, and the interconnectedness of such developments based on Energy Valley and supplementary cases of Karlstad and Silicon Valley. The research findings led to insights into cluster systems developments and a model capturing cluster emergence.The research contributed to cluster theory by developing a CAS approach for cluster study that developed a whole systems approach to understand cluster dynamics, offering to the field of cluster study a qualitative understanding of cluster systems developments. Insights into interconnected developments at the micro, macro and inter-systemic levels, and into energy clusters in the context of energy transition were results of the research. The broad scope and nature of the study meant limitations were inherent and therefore recommendations for future research were included. EU Cluster Policy motivated the research and hence recommendations for policy developments were also part of the research contribution
DOCUMENT
Be energy future proof: - So, be energy future proof, you do now no how. - Include legislation in this but do not rely on legislation as a guide line. - Base your future-proof energy system on the trends and prepare for that. - But be aware: this ain’t easy.
DOCUMENT
The built environment requires energy-flexible buildings to reduce energy peak loads and to maximize the use of (decentralized) renewable energy sources. The challenge is to arrive at smart control strategies that respond to the increasing variations in both the energy demand as well as the variable energy supply. This enables grid integration in existing energy networks with limited capacity and maximises use of decentralized sustainable generation. Buildings can play a key role in the optimization of the grid capacity by applying demand-side management control. To adjust the grid energy demand profile of a building without compromising the user requirements, the building should acquire some energy flexibility capacity. The main ambition of the Brains for Buildings Work Package 2 is to develop smart control strategies that use the operational flexibility of non-residential buildings to minimize energy costs, reduce emissions and avoid spikes in power network load, without compromising comfort levels. To realise this ambition the following key components will be developed within the B4B WP2: (A) Development of open-source HVAC and electric services models, (B) development of energy demand prediction models and (C) development of flexibility management control models. This report describes the developed first two key components, (A) and (B). This report presents different prediction models covering various building components. The models are from three different types: white box models, grey-box models, and black-box models. Each model developed is presented in a different chapter. The chapters start with the goal of the prediction model, followed by the description of the model and the results obtained when applied to a case study. The models developed are two approaches based on white box models (1) White box models based on Modelica libraries for energy prediction of a building and its components and (2) Hybrid predictive digital twin based on white box building models to predict the dynamic energy response of the building and its components. (3) Using CO₂ monitoring data to derive either ventilation flow rate or occupancy. (4) Prediction of the heating demand of a building. (5) Feedforward neural network model to predict the building energy usage and its uncertainty. (6) Prediction of PV solar production. The first model aims to predict the energy use and energy production pattern of different building configurations with open-source software, OpenModelica, and open-source libraries, IBPSA libraries. The white-box model simulation results are used to produce design and control advice for increasing the building energy flexibility. The use of the libraries for making a model has first been tested in a simple residential unit, and now is being tested in a non-residential unit, the Haagse Hogeschool building. The lessons learned show that it is possible to model a building by making use of a combination of libraries, however the development of the model is very time consuming. The test also highlighted the need for defining standard scenarios to test the energy flexibility and the need for a practical visualization if the simulation results are to be used to give advice about potential increase of the energy flexibility. The goal of the hybrid model, which is based on a white based model for the building and systems and a data driven model for user behaviour, is to predict the energy demand and energy supply of a building. The model's application focuses on the use case of the TNO building at Stieltjesweg in Delft during a summer period, with a specific emphasis on cooling demand. Preliminary analysis shows that the monitoring results of the building behaviour is in line with the simulation results. Currently, development is in progress to improve the model predictions by including the solar shading from surrounding buildings, models of automatic shading devices, and model calibration including the energy use of the chiller. The goal of the third model is to derive recent and current ventilation flow rate over time based on monitoring data on CO₂ concentration and occupancy, as well as deriving recent and current occupancy over time, based on monitoring data on CO₂ concentration and ventilation flow rate. The grey-box model used is based on the GEKKO python tool. The model was tested with the data of 6 Windesheim University of Applied Sciences office rooms. The model had low precision deriving the ventilation flow rate, especially at low CO2 concentration rates. The model had a good precision deriving occupancy from CO₂ concentration and ventilation flow rate. Further research is needed to determine if these findings apply in different situations, such as meeting spaces and classrooms. The goal of the fourth chapter is to compare the working of a simplified white box model and black-box model to predict the heating energy use of a building. The aim is to integrate these prediction models in the energy management system of SME buildings. The two models have been tested with data from a residential unit since at the time of the analysis the data of a SME building was not available. The prediction models developed have a low accuracy and in their current form cannot be integrated in an energy management system. In general, black-box model prediction obtained a higher accuracy than the white box model. The goal of the fifth model is to predict the energy use in a building using a black-box model and measure the uncertainty in the prediction. The black-box model is based on a feed-forward neural network. The model has been tested with the data of two buildings: educational and commercial buildings. The strength of the model is in the ensemble prediction and the realization that uncertainty is intrinsically present in the data as an absolute deviation. Using a rolling window technique, the model can predict energy use and uncertainty, incorporating possible building-use changes. The testing in two different cases demonstrates the applicability of the model for different types of buildings. The goal of the sixth and last model developed is to predict the energy production of PV panels in a building with the use of a black-box model. The choice for developing the model of the PV panels is based on the analysis of the main contributors of the peak energy demand and peak energy delivery in the case of the DWA office building. On a fault free test set, the model meets the requirements for a calibrated model according to the FEMP and ASHRAE criteria for the error metrics. According to the IPMVP criteria the model should be improved further. The results of the performance metrics agree in range with values as found in literature. For accurate peak prediction a year of training data is recommended in the given approach without lagged variables. This report presents the results and lessons learned from implementing white-box, grey-box and black-box models to predict energy use and energy production of buildings or of variables directly related to them. Each of the models has its advantages and disadvantages. Further research in this line is needed to develop the potential of this approach.
DOCUMENT