In early game development phases game designers adjust game rules in a rapid, iterative and flexible way. In later phases, when software prototypes are available, play testing provides more detailed feedback about player experience. More often than not, the realized and the intended gameplay emerging from game software differ. Unfortunately, adjusting it is hard because designers lack a means for efficiently defining, fine-tuning and balancing game mechanics. The language Machinations provides a graphical notation for expressing the rules of game economies that fits with a designer's understanding and vocabulary, but is limited to design itself. Micro-Machinations (MM) formalizes the meaning of core language elements of Machinations enabling reasoning about alternative behaviors and assessing quality, making it also suitable for software development. We propose an approach for designing, embedding and adapting game mechanics iteratively in game software, and demonstrate how the game mechanics and the gameplay of a tower defense game can be easily changed and promptly play tested. The approach shows that MM enables the adaptability needed to reduce design iteration times, consequently increasing opportunities for quality improvements and reuse.
This study will examine how branded games in the LEGO Ninjago franchise communicate the brand narrative through their mechanical, semiotic and referential design. Digital games as communicative tools facilitate a new paradigm of marketing focusing on experience creation through integrated marketing communication plans. The LEGO brand creates highly successful games that communicate the brand effectively. To explore the possibilities and counteract the simplistic use of branded games, this study introduces an innovative framework to formally analyze branded games and their communication of a brand narrative through mechanical, semiotic and referential layers. This framework introduces formal game design to advertising studies, while dragging game studies into branded ecosystems. Using the framework, we analyze LEGO Ninjago the Movie – The Videogame, to identify how this paid digital game expands the Ninjago universe and fulfills specific marketing purposes oriented to LEGO toy sets. Our analysis shows that on a mechanical and semiotic layer, the game presents a standalone experience catering to the universe of the Ninjago movie and the values of the Ninjago brand narrative. However, by framing the whole game as LEGO – in its materiality and interactable objects – the LEGO brand narrative of creative construction informs the act of play. The referential design in these games makes use of playful disruption of rules to instill additive comprehension in the player related to purchasable sets and content.
Game-based learning (GBL) and gamification can improve the learning experience of students by making learning more fun, interesting, and motivating. However, integrating games in practice is challenging for many teachers as it requires competences that not necessarily are part of their teaching repertoire. Game-based pedagogy (GBP) refers to the teaching methods and learning processes involved in learning with games. Research stresses the need for adequate professional development and teacher education on GBP. However, there is a lack of empirical knowledge on effective methods to prepare pre-service and in-service teachers for using game-based learning. The aim of our research is to gain insight into the design of effective GBP learning experiences for teachers. The guiding research question was: What design elements of a course on GBL impacted in-service teachers' GBP competences and teaching practice? We investigated this question in the context of a teacher education program in the Fall 2023. We conducted an empirical study in which a course on GBL was designed, implemented, and evaluated in practice. The participants were 16 in-service secondary teachers from different disciplines in secondary education, from which 13 agreed to participate in this study, and three course leaders. We investigated participants’ and course leaders’ experiences, participants’ competences in GBP, the impact on participants’ teaching practice and the way design elements contributed to it. The data consisted of participant reflections, transcripts from participants and course leaders’ interviews and answers to a questionnaire. The data was collected and analysed using quantitative and qualitative methods between January and April 2024. Results reveal that in-service teachers’ improved their competences on GBP and increased their use of GBL in practice. Qualitative data analysis provides insight into the course's design elements and on participants’ learning process. This study contributes to GBP-education by offering a possible design solution and framework for developing effective teacher education.
Electronic Sports (esports) is a form of digital entertainment, referred to as "an organised and competitive approach to playing computer games". Its popularity is growing rapidly as a result of an increased prevalence of online gaming, accessibility to technology and access to elite competition.Esports teams are always looking to improve their performance, but with fast-paced interaction, it can be difficult to establish where and how performance can be improved. While qualitative methods are commonly employed and effective, their widespread use provides little differentiation among competitors and struggles with pinpointing specific issues during fast interactions. This is where recent developments in both wearable sensor technology and machine learning can offer a solution. They enable a deep dive into player reactions and strategies, offering insights that surpass traditional qualitative coaching techniquesBy combining insights from gameplay data, team communication data, physiological measurements, and visual tracking, this project aims to develop comprehensive tools that coaches and players can use to gain insight into the performance of individual players and teams, thereby aiming to improve competitive outcomes. Societal IssueAt a societal level, the project aims to revolutionize esports coaching and performance analysis, providing teams with a multi-faceted view of their gameplay. The success of this project could lead to widespread adoption of similar technologies in other competitive fields. At a scientific level, the project could be the starting point for establishing and maintaining further collaboration within the Dutch esports research domain. It will enhance the contribution from Dutch universities to esports research and foster discussions on optimizing coaching and performance analytics. In addition, the study into capturing and analysing gameplay and player data can help deepen our understanding into the intricacies and complexities of teamwork and team performance in high-paced situations/environments. Collaborating partnersTilburg University, Breda Guardians.
A world where technology is ubiquitous and embedded in our daily lives is becoming increasingly likely. To prepare our students to live and work in such a future, we propose to turn Saxion’s Epy-Drost building into a living lab environment. This will entail setting up and drafting the proper infrastructure and agreements to collect people’s location and building data (e.g. temperature, humidity) in Epy-Drost, and making the data appropriately available to student and research projects within Saxion. With regards to this project’s effect on education, we envision the proposal of several derived student projects which will provide students the opportunity to work with huge amounts of data and state-of-the-art natural interaction interfaces. Through these projects, students will acquire skills and knowledge that are necessary in the current and future labor-market, as well as get experience in working with topics of great importance now and in the near future. This is not only aligned with the Creative Media and Game Technologies (CMGT) study program’s new vision and focus on interactive technology, but also with many other education programs within Saxion. In terms of research, the candidate Postdoc will study if and how the data, together with the building’s infrastructure, can be leveraged to promote healthy behavior through playful strategies. In other words, whether we can persuade people in the building to be more physically active and engage more in social interactions through data-based gamification and building actuation. This fits very well with the Ambient Intelligence (AmI) research group’s agenda in Augmented Interaction, and CMGT’s User Experience line. Overall, this project will help spark and solidify lasting collaboration links between AmI and CMGT, give body to AmI’s new Augmented Interaction line, and increase Saxion’s level of education through the dissemination of knowledge between researchers, teachers and students.
Stedelijke regio’s streven naar een duurzame mobiliteitstransitie. Deze ambitie staat echter op gespannen voet met het hoge autobezit- en autogebruik. De stormachtige introductie van lichte elektrische voertuigen, oftewel LEVs (denk aan e-scooters, e-steps, e-(cargo)bikes en micro-cars) leek een belangrijke ‘gamechanger’ te zijn. Deze LEVs zijn namelijk klein en efficiënt, zijn nagenoeg emissievrij, bieden mogelijkheden voor het verbeteren van het voor- en natransport van het openbaar vervoer (OV) en worden bovendien door hun gebruikers als prettig ervaren tijdens het reizen.Tot op heden maken LEVs deze beloften echter onvoldoende waar. Bij de introductie, thans met name in de vorm van deelsystemen, komen diverse uitdagingen aan het licht zoals: 1) verrommeling en overlast door verkeerd gepareerde LEVs, 2) ongewenste substitutie van loop-, fiets- en OV-verplaatsingen en beperkte impact op autogebruik en 3) en zorgen over de verkeersveiligheid en beleving, met name op de (al steeds drukker wordende) fietsinfrastructuur in Nederland. Deze problemen komen mede voort uit de snelle introductie waardoor gemeenten achter de feiten aanliepen en geen gericht beleid konden voeren. Langzaam komen we nu in een periode van stabilisatie en regulering maar een doorontwikkeling naar pro-actief LEV beleid is nodig om de potentie van LEVs voor de mobiliteitstransitie te ondersteunen. Het LEVERAGE-consortium, bestaande uit sterke partners uit de triple helix, gaat daarom aan de slag met deze vraagstukken. De centrale onderzoeksvraag is:Wat is de potentie van LEVs voor de mobiliteitstransitie naar bereikbare, duurzame, verkeersveilige, inclusieve en leefbare stedelijke regio’s en hoe kan deze optimaal worden benut door een betere integratie van LEVs in het mobiliteitssysteem en het mobiliteitsbeleid en door een effectieve governance van de samenwerking tussen publieke en private stakeholders?Om deze vraag te beantwoorden heeft het consortium een ambitieus en innovatieve onderzoeksopzet gedefinieerd waarbij veel nadruk wordt gelegd op de disseminatie en exploitatie van kennis in de beleidspraktijk.Collaborative partnersProvincie Noord-Brabant, Metropoolregio Arnhem-Nijmegen, Gemeente Eindhoven, Gemeente Breda, Gemeente Arnhem, Ministerie I&W, Rijkswaterstaat, Arriva, PON, Check, Citysteps, Cenex, TIER, We-all-Wheel, Fleet investment, Goudappel, Kennisinstellingen en netwerkorganisaties, HAN, TU/e, CROW, Connekt, POLIS, SWOV.