Recent years have witnessed a rise in Game Jams - organized events to create playable prototypes in a very short time frame. Game Jams offer a unique and quick way to prototype games. Beyond that, we believe Game Jams can also be seen as a design research method, situated in the research-through-design tradition, to create knowledge in a fast-paced, collaborative environment. The goal of this Game Jam is thus twofold: first, participants will use the Game Jam approach to investigate a research question; second, participants can, through actual practice, identify advantages and disadvantages of Game Jams as a research method. Hereby the Game Jam workshop provides a unique opportunity for HCI practitioners and researchers to gain experience in applying game-oriented methods for research.
Inequality of opportunity is high on the European education agenda. Equipping teachers to be able to identify and address inequality requires them to develop sensitivity, multi-perspectivity and agency, and these are complex attributes that require personal experiences and deep reflection.Recognizing this complexity, five Master’s students chose this challenge for their collective graduate research project. Following the principles of design research and inspired by Bourdieu’s ideas on different forms of capital, they developed a card game that helps both beginning and experienced teachers reflect on the hidden mechanisms of inequality, particularly on the effects of socio-economic status (SES), and it stimulates them to address these mechanisms.The impact of the card game – both in terms of outcomes and its driving mechanisms – is now the subject of a study, funded by the Centre of Expertise Urban Education of the Amsterdam University of Applied Sciences. The preliminary results are promising: especially identifying with low SES pupils and feeling the accumulation of negative experiences raises teachers’ awareness.In our presentation we first play the game with you and then discuss the results and possible implications and applications.
The research goal of this dissertation is to make configurational HRM usable for science and practice by developing a simulation model and serious game. These tools offer HRM professionals the opportunity to design a multiyear HRM configuration that shapes employee behaviour, while enabling HRM research to get access to a level of detail that was not achieved earlier, contributing to the current state of the art knowledge on strategic HRM. To shape employee behavior in such a way that it contributes to overarching organizational goals, organizations often deploy a set of human resource management (HRM) practices. If the set of individual HRM-practices is designed correctly, they amplify each other in shaping the desired behavior. However, while there is wide agreement on the importance of combining HRM-practices in a configuration that reflects the organizational strategy, we notice a lack of consensus on which HRM-practices need to be combined given a specific strategic goal and organizational starting point. Furthermore, we did not find an agreement on how to design HRM configurations that shape the desired employee behavior within organizations in multiple years. As a result, HRM professionals that design HRM configurations are left empty handed. While the configurational approach has the potential to provide new insight on how HRM shapes employees’ behavior, applying the configurational mode of theorizing to HRM remains challenging. We explain this challenge by the level of theoretical and practical detail that is needed, by the application of the holistic principle when studying HRM configurations, and due to methodological issues. Traditional methods do not align to the dynamic assumptions and the large number of variables included in configurational HRM. In this dissertation we pose that the time is ripe to unlock the deserved value of configurational HRM for theory and practice. We do so by specifying the underlying assumptions and dynamic implications of the configurational mode of theorizing in HRM, and by defining and adding the needed level of detail. In the current research, configurational HRM is made applicable with the use of a simulation model and serious game. -172- Five sequential steps are taken to make configurational HRM applicable. Firstly, key principles of configurational HRM are identified. Secondly, to ground the simulation we look at the manifestation of ideal type HRM configurations in theory and practice. Thirdly, we collect the solidified practical knowledge of HRM professionals on the alignment of HRM-practices. Fourthly, an initial simulation model is created and tested. And finally, we solidified the simulation model for practice and research by implementing it in a serious game for HRM professionals. Taking these five steps, we have specified configurational HRM to an unprecedented level of detail that allows us to address its complexity empirically and theoretically. We claim that with the results of this research we have opened the scientific and empirical “black box” of configurational HRM. Furthermore, the simulation model and serious game provides HRM professionals with a tool to design firm specific HRM configurations in an interactive and fun way. While prior studies did already acknowledge the importance of alignment when designing HRM, the simulation model and serious game specify the general concept of alignment to a level at which HRM professionals and researchers can start selecting, designing, implementing and researching HRM configurations. The tools provide HRM professionals with a method to grasp, maneuver through the complexity of, and explore the implementation of multi-year firm specific HRM.
MULTIFILE
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.
Evaluating player game experiences through biometric measurementsThe BD4CG (Biometric Design for Casual Games project) worked in a highly interdisciplinary context with several international partners. The aim of our project was to popularize the biometric method, which is a neuro-scientific approach to evaluating the player experience. We specifically aimed at the casual games sector, where casual games can be defined as video or web-based games with simple and accessible game mechanics, non threatening themes and generally short play sessions. Popular examples of casual games are Angry Birds and FarmVille. We focussed on this sector because it is growing fast, but its methodologies have not grown with it yet. Especially the biometrics method has so far been almost exclusively used domain by the very large game developers (such as Valve and EA). The insights and scientific output of this project have been enthusiastically embraced by the international academic arena. The aim of the grant was to focus on game producers in the casual sector, and we have done so but we also established further contacts with the game sector in general. Thirty-one outputs were generated, in the form of presentations, workshops, and accepted papers in prominent academic and industry journals in the field of game studies and game user research. Partners: University of Antwerpen, RANJ, Forward Games, Double Jungle, Realgames, Dreams of Danu, Codemasters, Dezzel, Truimph Studios, Golabi Studios
GAMING HORIZONS is a multidisciplinary project that aims to expand the research and innovation agenda on serious gaming and gamification. The project is particularly interested in the use of games for learning and cultural development. Gamification - and gaming more broadly – are very important from a socio-economic point of view, but over the past few years they have been at the centre of critical and challenging debates, which highlighted issues such as gender and minority representation, and exploitative game mechanics. Our project’s key contention is that it is important for the European ICT community to engage with design trends and social themes that have affected profoundly the mainstream and ‘independent’ game development cultures over the past few years, especially because the boundaries between leisure and serious games are increasingly blurred. GAMING HORIZONS is a direct response to the official recognition by the H2020 programme of work that multidisciplinary research can help to advance the integration between Responsible Research and Innovation (RRI) and the Social Sciences and the Humanities (SSH). The project’s objective is to enable a higher uptake of socially responsible ICT-related research in relation to gaming. This objective will be achieved through a research-based exchange between communities of developers, policy makers, users and researchers. The methodology will involve innovative data collection activities and consultations with a range of stakeholders over a period of 14 months. We will interrogate the official ‘H2020 discourse’ on gamification – with a particular focus on ‘gamified learning’ - whilst engaging with experts, developers and critical commentators through interviews, events, workshops and systematic dialogue with an Advisory Board. Ultimately, GAMING HORIZONS will help identify future directions at the intersection of ethics, social research, and both the digital entertainment and serious games industries.EU FundingThe 14-month research project 'Gaming Horizons' was funded by the European Commission through the Horizon 2020 research and innovation programme.