© Springer International Publishing AG 2016. A serious game needs to combine a number of different aspects to help the end user in reaching the desired effects. This requires incorporating a broad range of different aspects in the design, stemming from a broad range of different fields of expertise. For designers, developers, researchers, and other stakeholders it is not straightforward how to organize the design and development process, to make sure that these aspects are properly addressed. In this chapter we will discuss a number of ways of organizing the design and development process and various models that support specific design decisions during this process, concluding with a discussion of design patterns for serious games.
DOCUMENT
Design and development practitioners such as those in game development often have difficulty comprehending and adhering to the European General Data Protection Regulation (GDPR), especially when designing in a private sensitive way. Inadequate understanding of how to apply the GDPR in the game development process can lead to one of two consequences: 1. inadvertently violating the GDPR with sizeable fines as potential penalties; or 2. avoiding the use of user data entirely. In this paper, we present our work on designing and evaluating the “GDPR Pitstop tool”, a gamified questionnaire developed to empower game developers and designers to increase legal awareness of GDPR laws in a relatable and accessible manner. The GDPR Pitstop tool was developed with a user-centered approach and in close contact with stakeholders, including practitioners from game development, legal experts and communication and design experts. Three design choices worked for this target group: 1. Careful crafting of the language of the questions; 2. a flexible structure; and 3. a playful design. By combining these three elements into the GDPR Pitstop tool, GDPR awareness within the gaming industry can be improved upon and game developers and designers can be empowered to use user data in a GDPR compliant manner. Additionally, this approach can be scaled to confront other tricky issues faced by design professionals such as privacy by design.
LINK
Sustainability has become an important blueprint to achieve a better future for all, and as part of this process, nations are called to accelerate an energy transition towards clean energy solutions. However, an often-neglected pillar is educating individuals on the benefits and challenges of energy efficiency and renewable energy, especially among young people. Their support and willingness to use clean energies will be a significant driver in short, medium and long term. However, reality shows that attention from youth on these issues has not been sufficient yet. Formal education settings become therefore a key place to educate youth in the energy transition. In search of innovative approaches, game-based learning is gaining popularity among scholars and practitioners; it can contribute to content development of complex issues by integrating insights from different disciplines in an interactive, fun and engaging manner.In this context, we would like to present “the We-Energy Game” as an innovative educational strategy which makes use of game-based learning to create understanding on the challenges in the provision of affordable energy from renewable sources for an entire town. During the game, players negotiate, from their respective roles, which energy source they want to employ and on which location, with the goal to make a village or city energy neutral. The game has been played by students in higher education institutions in The Netherlands.In addition to introducing the game, a study is presented on the effects of the game on students´ awareness on the energy transition, self-efficacy -the feeling that they can contribute to a sustainable energy transition in their towns by themselves- and collective efficacy -the feeling that they can contribute to a sustainable energy transition in their towns together with their community-. For that purpose, we conducted a survey with 100 bachelor (Dutch and international) students aged between 18 and 30 years old, at Hanze University of Applied Sciences, before and after playing the game. We also conducted a group discussion with a smaller group of students to understand their opinion about the game. From the survey, results reveal an increase in awareness about the energy transition, as well as (slightly higher) collective efficacy compared to self-efficacy. From the group discussion, findings reveal that the game makes students reflect on the complexity of the process and need for collaboration among different stakeholders. It also shows how educational games have still a long way to go to achieve the high levels of engagement of commercial games, despite the fact that students still preferred to have this type of interactive practice rather than a traditional class characterized by a unidirectional transmission of information. Different implications must be taken into account for educators when interested in implementing game-based learning in class, including immediate feedback, appropriate length of gameplay during class, and time for a reflection and critical thinking after playing the game.
DOCUMENT
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.
Plastic products are currently been critically reviewed due to the growing awareness on the related problems, such as the “plastic soup”. EU has introduced a ban for a number of single-use consumer products and fossil-based polymers coming in force in 2021. The list of banned products are expected to be extended, for example for single-use, non-compostable plastics in horticulture and agriculture. Therefore, it is crucial to develop sustainable, biodegradable alternatives. A significant amount of research has been performed on biobased polymers. However, plastics are made from a polymer mixed with other materials, additives, which are essential for the plastics production and performance. Development of biodegradable solutions for these additives is lacking, but is urgently needed. Biocarbon (Biochar), is a high-carbon, fine-grained residue that is produced through pyrolysis processes. This natural product is currently used to produce energy, but the recent research indicate that it has a great potential in enhancing biopolymer properties. The biocarbon-biopolymer composite could provide a much needed fully biodegradable solution. This would be especially interesting in agricultural and horticultural applications, since biocarbon has been found to be effective at retaining water and water-soluble nutrients and to increase micro-organism activity in soil. Biocarbon-biocomposite may also be used for other markets, where biodegradability is essential, including packaging and disposable consumer articles. The BioADD consortium consists of 9 industrial partners, a branch organization and 3 research partners. The partner companies form a complementary team, including biomass providers, pyrolysis technology manufacturers and companies producing products to the relevant markets of horticulture, agriculture and packaging. For each of the companies the successful result from the project will lead to concrete business opportunities. The support of Avans, University of Groningen and Eindhoven University of Technology is essential in developing the know-how and the first product development making the innovation possible.
The Dutch Environmental Vision and Mobility Vision 2050 promote climate-neutral urban growth around public transport stations, envisioning them as vibrant hubs for mobility, community, and economy. However, redevelopment often increases construction, a major CO₂ contributor. Dutch practice-led projects like 'Carbon Based Urbanism', 'MooiNL - Practical guide to urban node development', and 'Paris Proof Stations' explore integrating spatial and environmental requirements through design. Design Professionals seek collaborative methods and tools to better understand how can carbon knowledge and skills be effectively integrated into station area development projects, in architecture and urban design approaches. Redeveloping mobility hubs requires multi-stakeholder negotiations involving city planners, developers, and railway managers. Designers act as facilitators of the process, enabling urban and decarbonization transitions. CARB-HUB explores how co-creation methods can help spatial design processes balance mobility, attractiveness, and carbon neutrality across multiple stakeholders. The key outputs are: 1- Serious Game for Co-Creation, which introduces an assessment method for evaluating the potential of station locations, referred to as the 4P value framework. 2-Design Toolkit for Decarbonization, featuring a set of Key Performance Indicators (KPIs) to guide sustainable development. 3- Research Bid for the DUT–Driving Urban Transitions Program, focusing on the 15-minute City Transition Pathway. 4- Collaborative Network dedicated to promoting a low-carbon design approach. The 4P value framework offers a comprehensive method for assessing the redevelopment potential of station areas, focusing on four key dimensions: People, which considers user experience and accessibility; Position, which examines the station's role within the broader transport network; Place-making, which looks at how well the station integrates into its surrounding urban environment; and Planet, which addresses decarbonization and climate adaptation. CARB-HUB uses real cases of Dutch stations in transition as testbeds. By translating abstract environmental goals into tangible spatial solutions, CARB-HUB enables scenario-based planning, engaging designers, policymakers, infrastructure managers, and environmental advocates.