Game Mechanics is aimed at game design students and industry professionals who want to improve their understanding of how to design, build, and test the mechanics of a game. Game Mechanics will show you how to design, test, and tune the core mechanics of a game—any game, from a huge role-playing game to a casual mobile phone game to a board game. Along the way, we’ll use many examples from real games that you may know: Pac-Man, Monopoly, Civilization, StarCraft II, and others. The authors provide two features. One is a tool called Machinations that can be used to visualize and simulate game mechanics on your own computer, without writing any code or using a spreadsheet. The other is a design pattern library, including the deep structures of game economies that generate challenge and many kinds of feedback loops.
DOCUMENT
Sustainability has become an important blueprint to achieve a better future for all, and as part of this process, nations are called to accelerate an energy transition towards clean energy solutions. However, an often-neglected pillar is educating individuals on the benefits and challenges of energy efficiency and renewable energy, especially among young people. Their support and willingness to use clean energies will be a significant driver in short, medium and long term. However, reality shows that attention from youth on these issues has not been sufficient yet. Formal education settings become therefore a key place to educate youth in the energy transition. In search of innovative approaches, game-based learning is gaining popularity among scholars and practitioners; it can contribute to content development of complex issues by integrating insights from different disciplines in an interactive, fun and engaging manner.In this context, we would like to present “the We-Energy Game” as an innovative educational strategy which makes use of game-based learning to create understanding on the challenges in the provision of affordable energy from renewable sources for an entire town. During the game, players negotiate, from their respective roles, which energy source they want to employ and on which location, with the goal to make a village or city energy neutral. The game has been played by students in higher education institutions in The Netherlands.In addition to introducing the game, a study is presented on the effects of the game on students´ awareness on the energy transition, self-efficacy -the feeling that they can contribute to a sustainable energy transition in their towns by themselves- and collective efficacy -the feeling that they can contribute to a sustainable energy transition in their towns together with their community-. For that purpose, we conducted a survey with 100 bachelor (Dutch and international) students aged between 18 and 30 years old, at Hanze University of Applied Sciences, before and after playing the game. We also conducted a group discussion with a smaller group of students to understand their opinion about the game. From the survey, results reveal an increase in awareness about the energy transition, as well as (slightly higher) collective efficacy compared to self-efficacy. From the group discussion, findings reveal that the game makes students reflect on the complexity of the process and need for collaboration among different stakeholders. It also shows how educational games have still a long way to go to achieve the high levels of engagement of commercial games, despite the fact that students still preferred to have this type of interactive practice rather than a traditional class characterized by a unidirectional transmission of information. Different implications must be taken into account for educators when interested in implementing game-based learning in class, including immediate feedback, appropriate length of gameplay during class, and time for a reflection and critical thinking after playing the game.
DOCUMENT
Design In our modern world, we are constantly confronted by challenges of a societal, ecological, organisational, strategic or cultural nature. These so-called wicked problems are difficult to define and even harder to solve, often requiring feats of collaboration. Design, Play, Change is a Design Thinking book and game created for managers, entrepreneurs, trainers, coaches, educators and students who want to develop innovative ideas for future change within and between their teams or organisations. In short, this book is the active agent that can be used to theorise, restructure and overcome challenges we face on a daily basis. Play Crafted both for experts in Design Thinking and for those just getting started, Design, Play, Change will explain the theory behind designing as well as demonstrate how to think, act, create and feel like a designer. With 40 method cards, spanning across different critical roles like the Creator, Emphatiser, Thinker and Maker, the book presents an extremely accessible and fun way of examining complex contemporary challenges with a light-hearted outlook. Regardless of what challenge needs to be overcome, this collaborative game creates a shared vision of the challenge at hand while also generating inspiring insights, fresh ideas and productive activities. Above all, Design, Play, Change is inspirational, energising and fun for you and the whole team playing along with you. At it’s core, Design, Play, Change teaches readers and players a practical way of reframing, envisioning and evaluating their challenges and ideas, addressing them like a designer would in a collaborative game format. Design, Play, Change is a game and a book and is avaliable here: https://www.bispublishers.com/design-play-change.html
DOCUMENT
n 2022 bewoog slechts 44 procent van de Nederlanders voldoende en in 2019 bewoog nog 49 procent voldoende en dat is een serieus probleem (Bron: RIVM). Daarnaast wordt gamen te erg geassocieerd met lui op een stoel zitten, dit willen we veranderen door meer beweging te creëren in het gamen. Daarom hebben we een prototype ontwikkeld waarbij augmented reality (AR) is geïntegreerd in de sport kickboks. Doordat twee mensen tegenover elkaar staan met een AR-bril op zien ze elkaar door de bril met een virtuele display ertussen. Hierdoor is het mogelijk om tegen elkaar te sparren zonder dat er fysiek contact bij komt kijken. De kickboksers zien bij elke stoot die ze uitdelen een virtueel effect, waardoor het de ervaring geeft alsof ze de persoon die tegenover hen staat echt raken. Deze technologie opent nieuwe deuren voor zowel beginners als gevorderde kickboksers. Voor beginners biedt het een veilige en laagdrempelige omgeving om de basisprincipes van de sport te leren, zonder de angst voor fysieke confrontatie. Voor gevorderden biedt het een geavanceerde manier om hun techniek te verfijnen, aangezien de ingebouwde bewegingssensoren feedback geven over de precisie en kracht van hun slagen. De potentie van dit prototype om de drempel voor sportdeelname te verlagen en tegelijkertijd de kwaliteit van de training te verbeteren, is enorm. Met deze innovatie hopen we niet alleen individuen aan te moedigen om actiever te worden, maar ook een verschuiving teweeg te brengen in hoe we denken over beweging, technologie en de toekomst van sport.
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.
Evaluating player game experiences through biometric measurementsThe BD4CG (Biometric Design for Casual Games project) worked in a highly interdisciplinary context with several international partners. The aim of our project was to popularize the biometric method, which is a neuro-scientific approach to evaluating the player experience. We specifically aimed at the casual games sector, where casual games can be defined as video or web-based games with simple and accessible game mechanics, non threatening themes and generally short play sessions. Popular examples of casual games are Angry Birds and FarmVille. We focussed on this sector because it is growing fast, but its methodologies have not grown with it yet. Especially the biometrics method has so far been almost exclusively used domain by the very large game developers (such as Valve and EA). The insights and scientific output of this project have been enthusiastically embraced by the international academic arena. The aim of the grant was to focus on game producers in the casual sector, and we have done so but we also established further contacts with the game sector in general. Thirty-one outputs were generated, in the form of presentations, workshops, and accepted papers in prominent academic and industry journals in the field of game studies and game user research. Partners: University of Antwerpen, RANJ, Forward Games, Double Jungle, Realgames, Dreams of Danu, Codemasters, Dezzel, Truimph Studios, Golabi Studios