PURPOSE: To determine the impact of late radiation-induced toxicity on health-related quality of life (HRQoL) among patients with prostate cancer.PATIENTS AND METHODS: The study sample was composed of 227 patients, treated with external beam radiotherapy. Common Terminology Criteria for Adverse Events version 3.0 were used to grade late genitourinary and gastrointestinal toxicity. The European Organization for Research and Treatment of Cancer Quality of life Questionnaire C30 (EORTC QLQ-C30) was used to assess HRQoL at baseline, and 6, 12 and 24 months after completion of radiotherapy. Statistical analysis was performed using a multivariate analysis of variance (MANOVA).RESULTS: Urinary incontinence and rectal discomfort significantly affected HRQoL. The impact of urinary incontinence on HRQoL was most pronounced 6 months after radiotherapy and gradually decreased over time. The impact of rectal discomfort on HRQoL was predominant at 6 months after radiotherapy, decreased at 12 months and increased again 2 years after radiotherapy. No significant impact on HRQoL was observed for any of the other toxicity endpoints, or non-toxicity related factors such as hormonal therapy, radiotherapy technique or age.CONCLUSION: Urinary incontinence and rectal discomfort have a significant impact on HRQoL. Prevention of these side effects may likely improve quality of life of prostate cancer patients after completion of treatment.
DOCUMENT
Background/Aims: This study examines the feasibility of a preoperative exercise program to improve the physical fitness of a patient before gastrointestinal surgery. Methods: An outpatient exercise program was developed to increase preoperative aerobic capacity, peripheral muscle endurance and respiratory muscle function in patients with pancreatic, liver, intestinal, gastric or esophageal cancer. During a consult at the outpatient clinic, patients were invited to participate in the exercise program when their surgery was not scheduled within 2 weeks. Results: The 115 participants followed on average 5.7 (3.5) training sessions. Adherence to the exercise program was high: 82% of the planned training sessions were attended, and no adverse events occurred. Mixed model analyses showed a significant increase of maximal inspiratory muscle strength (84.1-104.7 cm H2O; p = 0.00) and inspiratory muscle endurance (35.0-39.5 cm H2O; p = 0.00). No significant changes were found in aerobic capacity and peripheral muscle strength. Conclusion: This exercise program in patients awaiting oncological surgery is feasible in terms of participation and adherence. Inspiratory muscle function improved significantly as a result of inspiratory muscle training. The exercise program however failed to result in improved aerobic capacity and peripheral muscle strength, probably due to the limited number of training sessions as a result of the restricted time interval between screening and surgery.
DOCUMENT
The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NMon ILCs and other components of the serosal immune systemare scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NMmay lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NMon the serosal immune system.
DOCUMENT
In the last decade, the concept on interactions between humans, animals and their environment has drastically changed, endorsed by the One Health approach that recognizes that health of humans and animals are inextricably linked. Consideration of welfare of livestock has increased accordingly and with it, attention into the possibilities to improve livestock health via natural, more balanced nutrition is expanding. Central to effects of healthy nutrition is an optimal gastrointestinal condition which entails a well-balanced functional local immune system leading to a resilient state of well-being. This project proposal, GITools, aims to establish a toolbox of in vitro assays to screen new feed ingredients for beneficial effects on gastrointestinal health and animal well-being. GITools will focus on pig and chicken as important livestock species present in high quantities and living in close proximity to humans. GITools builds on intestinal models (intestinal cell lines and stem cell-derived organoids), biomarker analysis, and in vitro enzymatic and microbial digestion models of feed constituents. The concept of GITools originated from various individual contacts and projects with industry partners that produce animal feed (additives) or veterinary medicines. Within these companies, an urgent need exists for straightforward, well-characterized and standardized in vitro methods that provide results translatable to the in vivo situation. This to replace testing of new feed concepts in live animal. We will examine in vitro methods for their applicability with feed ingredients selected based on the availability of data from (previous) in vivo studies. These model compounds will include long and short chain fatty acids, oligosaccharides and herbal-derived components. GITools will deliver insights on the role of intestinal processes (e.g. dietary hormone production, growth of epithelial cells, barrier function and innate immune responses) in health and well-being of livestock animals and improve the efficiency of testing new feed products.