The methodology of biomimicry design thinking is based on and builds upon the overarching patterns that all life abides by. “Cultivating cooperative relationships” within an ecosystem is one such pattern we as humans can learn from to nurture our own mutualistic and symbiotic relationships. While form and process translations from biology to design have proven accessible by students learning biomimicry, the realm of translating biological functions in a systematic approach has proven to be more difficult. This study examines how higher education students can approach the gap that many companies in transition are struggling with today; that of thinking within the closed loops of their own ecosystem, to do good without damaging the system itself. Design students should be able to assess and advise on product design choices within such systems after graduation. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter, and many obstacles are encountered by students and their professional clients when trying to implement systems thinking into their design process. While biomimicry offers guidelines and methodology, there is insufficient research on complex, systems-level problem solving that systems thinking biomimicry requires. This study looks at factors found in course exercises, through student surveys and interviews that helped (novice) professionals initiate systems thinking methods as part of their strategy. The steps found in this research show characteristics from student responses and matching educational steps which enabled them to develop their own approach to challenges in a systems thinking manner. Experiences from the 2022 cohort of the semester “Design with Nature” within the Industrial Design Engineering program at The Hague University of Applied Sciences in the Netherlands have shown that the mixing and matching of connected biological design strategies to understand integrating functions and relationships within a human system is a promising first step. Stevens LL, Whitehead C, Singhal A. Cultivating Cooperative Relationships: Identifying Learning Gaps When Teaching Students Systems Thinking Biomimicry. Biomimetics. 2022; 7(4):184. https://doi.org/10.3390/biomimetics7040184
Best practice guide on creating an IT architecture that supports smart mobility services. Joint work of Karlstad University and Hanze University of Applied Sciences within the Interrg IVb project ITRACT.
The increasing share of renewable production like wind and PV poses new challenges to our energy system. The intermittent behavior and lack of controllability on these sources requires flexibility measures like storage and conversion. Production, consumption, transportation, storage and conversion systems become more intertwined. The increasing complexity of the system requires new control strategies to fulfill existing requirements.The SynergyS project addresses the main question how to operate increasingly complex energy systems in a controllable, robust, safe, affordable, and reliable way. Goal of the project is to develop and test a smart control system for a multi-commodity energy system (MCES), with electricity, hydrogen and heat. In scope are an industrial cluster (Chemistry Park Delfzijl) and a residential cluster (Leeuwarden) and their mutual interaction. Results are experimentally tested in two real-life demo-sites scale models: Centre of Expertise Energy (EnTranCe) and The Green Village (TU Delft) represent respectively the industrial and residential cluster.The result will be a market-driven control system to operate a multi-commodity energy system, integrating the industrial and residential cluster. The experimental setup is a combination of physical demo-site assets complemented with (digital) asset models. Experimental validation is based on a demo-scenario including real time data, simulated data and several stress tests.In this session we’ll elaborate more on the project and present (preliminary) results on the testing criteria, scenarios and experimental setup.
LINK
National forestry Commission (SBB) and National Park De Biesbosch. Subcontractor through NRITNational parks with large flows of visitors have to manage these flows carefully. Methods of data collection and analysis can be of help to support decision making. The case of the Biesbosch National Park is used to find innovative ways to figure flows of yachts, being the most important component of water traffic, and to create a model that allows the estimation of changes in yachting patterns resulting from policy measures. Recent policies oriented at building additional waterways, nature development areas and recreational concentrations in the park to manage the demands of recreation and nature conservation offer a good opportunity to apply this model. With a geographical information system (GIS), data obtained from aerial photographs and satellite images can be analyzed. The method of space syntax is used to determine and visualize characteristics of the network of leisure routes in the park and to evaluate impacts resulting from expected changes in the network that accompany the restructuring of waterways.