BACKGROUND: Prednisolone and other glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressive drugs. However, prolonged use at a medium or high dose is hampered by side effects of which the metabolic side effects are most evident. Relatively little is known about their effect on gene-expression in vivo, the effect on cell subpopulations and the relation to the efficacy and side effects of GCs.AIM: To identify and compare prednisolone-induced gene signatures in CD4⁺ T lymphocytes and CD14⁺ monocytes derived from healthy volunteers and to link these signatures to underlying biological pathways involved in metabolic adverse effects.MATERIALS & METHODS: Whole-genome expression profiling was performed on CD4⁺ T lymphocytes and CD14⁺ monocytes derived from healthy volunteers treated with prednisolone. Text-mining analyses was used to link genes to pathways involved in metabolic adverse events.RESULTS: Induction of gene-expression was much stronger in CD4⁺ T lymphocytes than in CD14⁺ monocytes with respect to fold changes, but the number of truly cell-specific genes where a strong prednisolone effect in one cell type was accompanied by a total lack of prednisolone effect in the other cell type, was relatively low. Subsequently, a large set of genes was identified with a strong link to metabolic processes, for some of which the association with GCs is novel.CONCLUSION: The identified gene signatures provide new starting points for further study into GC-induced transcriptional regulation in vivo and the mechanisms underlying GC-mediated metabolic side effects.
DOCUMENT
Synthetic glucocorticoids are potent anti-inflammatory drugs but show dose-dependent metabolic side effects such as the development of insulin resistance and obesity. The precise mechanisms involved in these glucocorticoid-induced side effects, and especially the participation of adipose tissue in this are not completely understood. We used a combination of transcriptomics, antibody arrays and bioinformatics approaches to characterize prednisolone-induced alterations in gene expression and adipokine secretion, which could underlie metabolic dysfunction in 3T3-L1 adipocytes. Several pathways, including cytokine signalling, Akt signalling, and Wnt signalling were found to be regulated at multiple levels, showing that these processes are targeted by prednisolone. These results suggest that mechanisms by which prednisolone induce insulin resistance include dysregulation of wnt signalling and immune response processes. These pathways may provide interesting targets for the development of improved glucocorticoids.
DOCUMENT
Glucocorticoids (GCs) such as prednisolone are potent immunosuppressive drugs but suffer from severe adverse effects, including the induction of insulin resistance. Therefore, development of so-called Selective Glucocorticoid Receptor Modulators (SGRM) is highly desirable. Here we describe a non-steroidal Glucocorticoid Receptor (GR)-selective compound (Org 214007-0) with a binding affinity to GR similar to that of prednisolone. Structural modelling of the GR-Org 214007-0 binding site shows disturbance of the loop between helix 11 and helix 12 of GR, confirmed by partial recruitment of the TIF2-3 peptide. Using various cell lines and primary human cells, we show here that Org 214007-0 acts as a partial GC agonist, since it repressed inflammatory genes and was less effective in induction of metabolic genes. More importantly, in vivo studies in mice indicated that Org 214007-0 retained full efficacy in acute inflammation models as well as in a chronic collagen-induced arthritis (CIA) model. Gene expression profiling of muscle tissue derived from arthritic mice showed a partial activity of Org 214007-0 at an equi-efficacious dosage of prednisolone, with an increased ratio in repression versus induction of genes. Finally, in mice Org 214007-0 did not induce elevated fasting glucose nor the shift in glucose/glycogen balance in the liver seen with an equi-efficacious dose of prednisolone. All together, our data demonstrate that Org 214007-0 is a novel SGRMs with an improved therapeutic index compared to prednisolone. This class of SGRMs can contribute to effective anti-inflammatory therapy with a lower risk for metabolic side effects.
DOCUMENT
The aim of the study was to evaluate whether multiple sclerosis (MS) is associated with risk of cataract or glaucoma. We conducted a population-based cohort study utilizing the UK General Practice Research Database (1987–2009) linked to the national hospital registry of England (1997–2008). Incident MS patients (5576 cases) were identified and each was matched to six patients without MS (controls) by age, gender, and practice. Cox proportional hazard models were used to estimate hazard ratios (HRs) of incident cataract and glaucoma in MS. Time-dependent adjustments were made for age, history of diseases and drug use.
DOCUMENT
1. We assessed the hypothesized negative correlation between the influence of multiple predators and body condition and fecundity of the European hare, from 13 areas in the Netherlands. 2. Year-round abundance of predators was estimated by hunters. We quantified predator influence as the sum of their field metabolic rates, as this sum reflects the daily food requirements of multiple individuals. We determined the ratio between body mass and hindfoot length of hares as an index of body condition and the weight of their adrenal gland as a measure of chronic exposure to stress, and we counted the number of placental scars to estimate fecundity of hares. 3. As hypothesized, we found that the sum of field metabolic rate of predators was negatively correlated with body condition and the number of placental scars, whereas it was positively related to the weight of the adrenal glands. In contrast to the sum of the field metabolic rate, the total number of predators did not or weakly affect the investigated risk responses. 4. The sum of the field metabolic rate can be a useful proxy for the influence of multiple predators and takes into account predator abundance, type, body weight, and food requirements of multiple predators. 5. With our findings, our paper contributes to a better understanding of the risk effects of multiple predators on prey fitness. Additionally, we identify a potential contributor to the decline of European hare populations.
DOCUMENT
To study the ways in which compounds can induce adverse effects, toxicologists have been constructing Adverse Outcome Pathways (AOPs). An AOP can be considered as a pragmatic tool to capture and visualize mechanisms underlying different types of toxicity inflicted by any kind of stressor, and describes the interactions between key entities that lead to the adverse outcome on multiple biological levels of organization. The construction or optimization of an AOP is a labor intensive process, which currently depends on the manual search, collection, reviewing and synthesis of available scientific literature. This process could however be largely facilitated using Natural Language Processing (NLP) to extract information contained in scientific literature in a systematic, objective, and rapid manner that would lead to greater accuracy and reproducibility. This would support researchers to invest their expertise in the substantive assessment of the AOPs by replacing the time spent on evidence gathering by a critical review of the data extracted by NLP. As case examples, we selected two frequent adversities observed in the liver: namely, cholestasis and steatosis denoting accumulation of bile and lipid, respectively. We used deep learning language models to recognize entities of interest in text and establish causal relationships between them. We demonstrate how an NLP pipeline combining Named Entity Recognition and a simple rules-based relationship extraction model helps screen compounds related to liver adversities in the literature, but also extract mechanistic information for how such adversities develop, from the molecular to the organismal level. Finally, we provide some perspectives opened by the recent progress in Large Language Models and how these could be used in the future. We propose this work brings two main contributions: 1) a proof-of-concept that NLP can support the extraction of information from text for modern toxicology and 2) a template open-source model for recognition of toxicological entities and extraction of their relationships. All resources are openly accessible via GitHub (https://github.com/ontox-project/en-tox).
DOCUMENT