Recently, we have introduced and modified graph-decomposition theorems based on a graph product motivated by applications in the context of synchronising periodic real-time processes. This vertex-removing synchronised product (VRSP) is based on modifications of the well-known Cartesian product and is closely related to the synchronised product due to Wöhrle and Thomas. Here, we introduce a new graph-decomposition theorem based on the VRSP that decomposes an edge-labelled acyclic n-partite multigraph where all labels are the same.
Recently, we have introduced a new graph product, motivated by applications in the context of synchronising periodic real-time processes. This vertex-removing synchronised product (VRSP) is based on modifications of the well-known Cartesian product, and closely related to the synchronised product due to Wöhrle and Thomas. Here, we recall the definition of the VRSP and use it to define two different decompositions of graphs. Although our main results apply to directed labelled acyclic multigraphs, the VRSP can also be used to decompose any undirected graph of order at least 4 into two smaller graphs.
Graphs are ubiquitous. Many graphs, including histograms, bar charts, and stacked dotplots, have proven tricky to interpret. Students’ gaze data can indicate students’ interpretation strategies on these graphs. We therefore explore the question: In what way can machine learning quantify differences in students’ gaze data when interpreting two near-identical histograms with graph tasks in between? Our work provides evidence that using machine learning in conjunction with gaze data can provide insight into how students analyze and interpret graphs. This approach also sheds light on the ways in which students may better understand a graph after first being presented with other graph types, including dotplots. We conclude with a model that can accurately differentiate between the first and second time a student solved near-identical histogram tasks.
National forestry Commission (SBB) and National Park De Biesbosch. Subcontractor through NRITNational parks with large flows of visitors have to manage these flows carefully. Methods of data collection and analysis can be of help to support decision making. The case of the Biesbosch National Park is used to find innovative ways to figure flows of yachts, being the most important component of water traffic, and to create a model that allows the estimation of changes in yachting patterns resulting from policy measures. Recent policies oriented at building additional waterways, nature development areas and recreational concentrations in the park to manage the demands of recreation and nature conservation offer a good opportunity to apply this model. With a geographical information system (GIS), data obtained from aerial photographs and satellite images can be analyzed. The method of space syntax is used to determine and visualize characteristics of the network of leisure routes in the park and to evaluate impacts resulting from expected changes in the network that accompany the restructuring of waterways.
In this project, the AGM R&D team developed and refined the use of a facial scanning rig. The rig is a physical device comprising multiple cameras and lighting that are mounted on scaffolding around a 'scanning volume'. This is an area at which objects are placed before being photographed from multiple angles. The object is typically a person's head, but it can be anything of this approximate size. Software compares the photographs to create a digital 3D recreation - this process is called photogrammetry. The 3D model is then processed by further pieces of software and eventually becomes a face that can be animated inside in Unreal Engine, which is a popular piece of game development software made by the company Epic. This project was funded by Epic's 'Megagrant' system, and the focus of the work is on streamlining and automating the processing pipeline, and on improving the quality of the resulting output. Additional work has been done on skin shaders (simulating the quality of real skin in a digital form) and the use of AI to re/create lifelike hair styles. The R&D work has produced significant savings in regards to the processing time and the quality of facial scans, has produced a system that has benefitted the educational offering of BUas, and has attracted collaborators from the commercial entertainment/simulation industries. This work complements and extends previous work done on the VIBE project, where the focus was on creating lifelike human avatars for the medical industry.
The scientific publishing industry is rapidly transitioning towards information analytics. This shift is disproportionately benefiting large companies. These can afford to deploy digital technologies like knowledge graphs that can index their contents and create advanced search engines. Small and medium publishing enterprises, instead, often lack the resources to fully embrace such digital transformations. This divide is acutely felt in the arts, humanities and social sciences. Scholars from these disciplines are largely unable to benefit from modern scientific search engines, because their publishing ecosystem is made of many specialized businesses which cannot, individually, develop comparable services. We propose to start bridging this gap by democratizing access to knowledge graphs – the technology underpinning modern scientific search engines – for small and medium publishers in the arts, humanities and social sciences. Their contents, largely made of books, already contain rich, structured information – such as references and indexes – which can be automatically mined and interlinked. We plan to develop a framework for extracting structured information and create knowledge graphs from it. We will as much as possible consolidate existing proven technologies into a single codebase, instead of reinventing the wheel. Our consortium is a collaboration of researchers in scientific information mining, Odoma, an AI consulting company, and the publisher Brill, sharing its data and expertise. Brill will be able to immediately put to use the project results to improve its internal processes and services. Furthermore, our results will be published in open source with a commercial-friendly license, in order to foster the adoption and future development of the framework by other publishers. Ultimately, our proposal is an example of industry innovation where, instead of scaling-up, we scale wide by creating a common resource which many small players can then use and expand upon.