Blue-green roofs have been utilized and studied for their enhanced water storage capacity compared to conventional roofs or extensive green roofs. Nonetheless, research about the thermal effect of blue-green roofs is lacking. The goal of this research is to study the thermal effect of blue-green roofs in order to assess their potential for shielding the indoor environment from outdoor temperature extremes (cold- and heat-waves). In this field study, we examined the differences between blue-green roofs and conventional gravel roofs from the perspective of the roof surface temperatures and the indoor temperatures in the city of Amsterdam for late 20th century buildings. Temperature sensor (iButtons) values indicate that outside surface temperatures for blue-green roofs are lower in summer and fluctuate less during the whole year than temperatures of conventional roofs. Results show that for three warm periods during summer in 2021 surface substrate temperatures peaked on average 5°C higher for gravel roofs than for blue-green roofs. Second, during both warm and cold periods, the temperature inside the water crate layer was more stable than the roof surface temperatures. During a cold period in winter, minimum water crate layer temperatures remained 3.0 o C higher than other outdoor surface temperatures. Finally, also the variation of the indoor temperature fluctuations of locations with and without blue-green roofs have been studied. Locations with blue-green roofs are less sensitive to outside air temperature changes, as daily temperature fluctuations (standard deviations) were systematically lower compared to conventional roofs for both warm and cold periods.
Cities worldwide are growing at unprecedented rates, compromising their surrounding landscapes, and consuming many scarce resources. As a consequence, this will increase the compactness of cities and will also decrease the availability of urban green space. In recent years, many Dutch municipalities have cut back on municipal green space and itsmaintenance. To offer a liveable environment in 30 to 50 years, cities must face challenges head-on and strive to create green urban areas that build on liveable and coherent sustainable circular subsystems.
MULTIFILE
Green spaces play an important role in urban areas. We study the accessibility of green urban areas by combining open data sets about green with population size data. We develop a mathematical model to define the population density of a green area and calculate the available green space depending on the location. To this end, we do not only consider walking distance to and size of the green area, but also take into account the local population size. Our model quantifies how the available green space depends on the location in the city, such that heavily populated areas have a small amount of green available, even when closely located to a green area.
MUSE supports the CIVITAS Community to increase its impact on urban mobility policy making and advance it to a higher level of knowledge, exchange, and sustainability.As the current Coordination and Support Action for the CIVITAS Initiative, MUSE primarily engages in support activities to boost the impact of CIVITAS Community activities on sustainable urban mobility policy. Its main objectives are to:- Act as a destination for knowledge developed by the CIVITAS Community over the past twenty years.- Expand and strengthen relationships between cities and stakeholders at all levels.- Support the enrichment of the wider urban mobility community by providing learning opportunities.Through these goals, the CIVITAS Initiative strives to support the mobility and transport goals of the European Commission, and in turn those in the European Green Deal.Breda University of Applied Sciences is the task leader of Task 7.3: Exploitation of the Mobility Educational Network and Task 7.4: Mobility Powered by Youth Facilitation.
Carboxylated cellulose is an important product on the market, and one of the most well-known examples is carboxymethylcellulose (CMC). However, CMC is prepared by modification of cellulose with the extremely hazardous compound monochloracetic acid. In this project, we want to make a carboxylated cellulose that is a functional equivalent for CMC using a greener process with renewable raw materials derived from levulinic acid. Processes to achieve cellulose with a low and a high carboxylation degree will be designed.
Aaltjes: automatisch classificeren en tellen. Agrariërs laten bodemmonsters analyseren op onder meer aanwezigheid van aaltjes. Deze bodemanalyse is voor agrariërs cruciaal om de bodemgezondheid- en vruchtbaarheid vast te stellen maar behelst een grote kostenpost. Het identificeren, analyseren en tellen van aaltjes (nematoden) in een bodemmonster geschiedt in een gespecialiseerd laboratorium. Dit is tijdrovend, specialistisch en seizoensgebonden werk. Het tellen- en analyseren van aaltjes is mensenwerk en vergt training en ervaring van de laborant. Daarnaast hebben de laboratoria te maken met personeelstekort en de laboranten met sterk fluctuerende werkdruk. Derhalve is het speciaal voor dit project opgerichte samenwerkingsverband tussen Fontys GreenTechLab, ROBA Laboratorium en CytoSMART voornemens om een oplossing te ontwikkelen voor het automatisch classificeren en tellen van aaltjes. Dit project richt zich op de ontwikkeling van een proof of concept van een analysescanner. Het werk van de laboranten wordt grotendeels geautomatiseerd waarbij door de scanner de bodemmonsters middels toepassing van deep learning en virtual modeling kan worden geanalyseerd. Daarmee wordt beoogd een oplossing te bieden waarmee het personeelstekort wordt tegengegaan, de werkdruk kan worden verlaagd, mensenwerk wordt geautomatiseerd (waardoor de kans op fouten wordt verkleind) en de kosten voor agrariërs worden verlaagd.