The European Commission has selected the Northern Netherlands to become the leading European hydrogen region and supports establishment of a complete local (green) hydrogen ecosystem covering production, storage, distribution, refueling and final use of hydrogen (Cordis, H2Valley, 2019). In line with the European recognition, the Dutch government has set the goal to establish a hydrogen ecosystem by 2025 that would further expand to Western Europe by 2030. Yet before the European Union nominated the Northern Netherlands as European Hydrogen Valley, the key stakeholders in the Northern Netherlands – industry, SMEs, knowledge institutions and government – committed to the long-term cooperation in development of the green hydrogen market. Subsequently, the three regional governments of the Northern Netherlands, - Groningen, Friesland and Drenthe, - prepared the common Hydrogen Investment Agenda (2019), which was further elaborated in the common Hydrogen Investment Plan (2020). The latter includes investments amounting to over 9 billion euro, which is believed will secure some 66.000 existing jobs and help create between 25 thousands (in 2030) and 41 thousands (in 2050) new jobs.However, implementation of these ambitious plans to establish a hydrogen ecosystem of this scale will require not only investments into development of a new infrastructure or technological adaptation of present energy systems, e.g., pipelines, but also facilitation of economic transformation and securing the social support and acceptance. What are the prospects for the social support for the developing European Hydrogen Valley in the Northern Netherlands and its acceptance by inhabitants? The paper discusses the social support and acceptance aspects for a hydrogen ecosystem in the context of regional experiences of energy transition, including the concerns of energy justice, safety, and public trust that were raised in the recent past.
LINK
Overcoming Challenges in local green H2 economies Organizer: Dr Beata Kviatek, Jean Monnet Chair in Sustainable EU Economy, Centre of Expertise Energy / International Business School / Hanze University of Applied Sciences Groningen, the Netherlands One of the main pathways of the current energy transition includes development of regional green hydrogen economy, usually based in the so-called hydrogen valleys. The development of regional green hydrogen economies enables to green up regional industry and mobility, brings new business opportunities for local and regional businesses, redirects regional investments and financial streams, and proposes new avenues for regional education, knowledge, and research institutions. However, the complexity of regional transformation towards green hydrogen economy, poses challenges that require a close cooperation between different local and regional stakeholders at multiple levels, including national and European. What are these challenges in developing regional green hydrogen economies here, in the northern part of the Netherlands, and in other regions of Europe and what are the new pathways to overcome challenges in regional green hydrogen economies? – is the main question of the proposed panel discussion that will involve academics, policy makers, and practitioners from the northern part of the Netherlands as well as some European regions.
DOCUMENT
Hydrogen (H2) is a key element in the Dutch energy transition, considered a sources of flexibility to balance the variable renewable energy sources, facilitating its integration into the energy system. But also as an energy carrier. Both the gas and electricity transmission operators (TSO) have the vision to interconnect their networks with H2, by distributing the green H2 produced with offshore electrolysers into high pressure gas pipelines to relive the overload electric network. The planned compressed H2 pipelines cross the north of North-Holland region, offering a backbone for a H2 economy. Furthermore, at regional level there are already a big number of privet-public H2 developments, among them the DuWaAl, which is a H2 production-demand chain, consists of 1) An H2 mill, 2) 5 filling stations in the region and 3) a large fleet of trucks and other users. Because of these developments, the North-Holland region needs a better insight into the position that H2 could fulfil in the local energy system to contribute to the energy transition. The aim of this research is to analyse these H2 economy, from the emergent to settled, by identifying early and potential producer- consumer, considering the future infrastructure requirements, and exploring economy-environmental impacts of different supply paths
DOCUMENT
This document combines four reports on existing regional business support programmes for inclusion or understanding of circular economy (CE) objectives, deliverable DT3.1.2 from the transform-CE project. Besides a general overview on national and regional level, the focus is on a selection of national and regional programmes aimed at the plastics industry. After explaining the format to structure the programmes, the results for the four regions are presented: Greater Manchester (UK), Rhineland Palatinate and North-Rhine Westphalia (DE), Wallonia (BE), Central Netherlands (NL).
MULTIFILE
DOCUMENT
This article addresses European energy policy through conventional and transformative sustainability approaches. The reader is guided towards an understanding of different renewable energy options that are available on the policy making table and how the policy choices have been shaped. In arguing that so far, European energy policy has been guided by conventional sustainability framework that focuses on eco-efficiency and ‘energy mix’, this article proposes greater reliance on circular economy (CE) and Cradle to Cradle (C2C) frameworks. Exploring the current European reliance on biofuels as a source of renewable energy, this article will provide recommendations for transition to transformative energy choices. http://dx.doi.org/10.13135/2384-8677/2331 https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Densely populated areas are major sources of air, soil and water pollution. Agriculture, manufacturing, consumer households and road traffic all have their share. This is particularly true for the country featured in this paper: the Netherlands. Continuous pollution of the air and soil manifests itself as acification, decalcification and eutrofication. Biodiversity becomes lower and lower in nature areas. Biological farms are also under threat. In case of mobility, local air pollution may have a huge health impact. Effective policy is called for, after high courts blocked construction projects, because of foreseen building- and transport-related NOx emissions. EU law makers are after Dutch governments, because these favoured economics and politics over environmental and liveability concerns. But, people in the Netherlands are strongly divided. The latest provincial elections were dominated by environmental concerns, next to many socio-economic issues. NOx and CO2 emissions by passenger cars are in focus. Technical means and increasing fuel economy norms strongly reduced NOx emissions to a still too high level. A larger number of cars neutralized a technological reduction of CO2 emissions. The question is: What would be the impact of a drastic mandatory reduction in CO2, NOx, and PM10 emissions on car ownership and use in the Netherlands? The authors used literature, scenario analysis and simulation modelling to answer this question. Electric mobility could remove these emissions. Its full impact will only be achieved if the grid-mix, which is still dominated by fossil fuels, becomes green(er), which is a gradual, long-term, process. EVs compete with other consumers of electricity, as many other activities, such as heating, are also electrifying. With the current grid-mix, it is inevitable that the number of km per vehicle per year is reduced to reach the scenario targets (−25% resp. −50% CO2 emissions by cars). This calls for an individual mobility budget per car user.
LINK
Energy policies are vital tools used by countries to regulate economic and social development as well as guarantee national security. To address the problems of fragmented policy objectives, conflicting tools, and overlapping initiatives, the internal logic and evolutionary trends of energy policies must be explored using the policy content. This study uses 38,277 energy policies as a database and summarizes the four energy policy objectives: clean, low-carbon, safe, and efficient. Using the TextCNN model to classify and deconstruct policies, the LDA + Word2vec theme conceptualization and similarity calculations were compared with the EISMD evolution framework to determine the energy policy theme evolution path. Results indicate that the density of energy policies has increased. Policies have become more comprehensive, barriers between objectives have gradually been broken, and low-carbon objectives have been strengthened. The evolution types are more diversified, evolution paths are more complicated, and the evolution types are often related to technology, industry, and market maturity. Traditional energy themes evolve through inheritance and merger; emerging technology and industry themes evolve through innovation, inheritance, and splitting. Moreover, this study provides a replicable analytical framework for the study of policy evolution in other sectors and evidence for optimizing energy policy design
DOCUMENT