This paper describes a project to explore the possibilities of virtual worlds in educating Green IT. In the project a virtual world has been created with various assignments which are meant to create awareness on sustainability aspects of IT. The world (and the assignments) will be incorporated in a course for first-year IT students. In order to measure the effects of the course, a questionnaire has been developed which can be used before and after the course to measure the attitude towards green IT.
DOCUMENT
Green data centres are the talk of the day. But who in fact is involved in developing green data centres? What is their contribution? And what does this contribution constitute in practical terms? This article states which stakeholders are involved in green data centres in the Netherlands, what their involvement is and what effect their involvement has. The article starts by giving the definitions for sustainability and by determining the stakeholders and their possibilities in this field. Next, we examine the actual impact of each stakeholder for arriving at greener data centres. This leads to a number of conclusions for achieving a larger degree of sustainability.
DOCUMENT
Background: The Turkish translation of the Dutch Talking Touch Screen Questionnaire (TTSQ) has been developed to help physical therapy patients with a Turkish background in the Netherlands to autonomously elucidate their health problems and impairments and set treatment goals, regardless of their level of health literacy. Objective: The aim of this study was to evaluate the usability of the Turkish TTSQ for physical therapy patients with a Turkish background with diverse levels of health literacy and experience in using mobile technology. Methods: The qualitative Three-Step Test-Interview method was carried out to gain insight into the usability of the Turkish TTSQ. A total of 10 physical therapy patients participated. The interview data were analyzed using a thematic content analysis approach aimed at determining the accuracy and completeness with which participants completed the questionnaire (effectiveness), the time it took participants to complete the questionnaire (efficiency), and the extent to which the participants were satisfied with the ease of use of the questionnaire (satisfaction). The problems encountered by the participants in this study were given a severity rating, which was used to provide a rough estimate of the need for additional usability improvements. Results: No participant in this study was able to complete the questionnaire without encountering at least one usability problem. A total of 17 different kinds of problems were found. On the basis of their severity score, 3 problems that should be addressed during future development of the tool were “Not using the navigation function of the photo gallery in Question 4 causing the participant to not see all presented response items;” “Touching the text underneath a photo in Question 4 to select an activity instead of touching the photo itself, causing the activity not to be selected;” and “Pushing too hard or tapping too softly on the touch screen causing the touch screen to not respond.” The data on efficiency within this study were not valid and are, therefore, not reported in this study. No participant was completely satisfied or dissatisfied with the overall ease of use of the Turkish TTSQ. Two participants with no prior experience of using tablet computers felt that, regardless of what kinds of improvement might be made, it would just be too difficult for them to learn to work with the device. Conclusions: As with the Dutch TTSQ, the Turkish TTSQ needs improvement before it can be released. The results of this study confirm the conclusion of the Dutch TTSQ study that participants with low levels of education and little experience in using mobile technology are less able to operate the TTSQ effectively. Using a Dutch speaking interviewer and Turkish interpreter has had a negative effect on data collection in this study.
LINK
Chemical preservation is an important process that prevents foods, personal care products, woods and household products, such as paints and coatings, from undesirable change or decomposition by microbial growth. To date, many different chemical preservatives are commercially available, but they are also associated with health threats and severe negative environmental impact. The demand for novel, safe, and green chemical preservatives is growing, and this process is further accelerated by the European Green Deal. It is expected that by the year of 2050 (or even as soon as 2035), all preservatives that do not meet the ‘safe-by-design’ and ‘biodegradability’ criteria are banned from production and use. To meet these European goals, there is a large need for the development of green, circular, and bio-degradable antimicrobial compounds that can serve as alternatives for the currently available biocidals/ preservatives. Anthocyanins, derived from fruits and flowers, meet these sustainability goals. Furthermore, preliminary research at the Hanze University of Applied Science has confirmed the antimicrobial efficacy of rose and tulip anthocyanin extracts against an array of microbial species. Therefore, these molecules have the potential to serve as novel, sustainable chemical preservatives. In the current project we develop a strategy consisting of fractionation and state-of-the-art characterization methods of individual anthocyanins and subsequent in vitro screening to identify anthocyanin-molecules with potent antimicrobial efficacy for application in paints, coatings and other products. To our knowledge this is the first attempt that combines in-depth chemical characterization of individual anthocyanins in relation to their antimicrobial efficacy. Once developed, this strategy will allow us to single out anthocyanin molecules with antimicrobial properties and give us insight in structure-activity relations of individual anthocyanins. Our approach is the first step towards the development of anthocyanin molecules as novel, circular and biodegradable non-toxic plant-based preservatives.
Dit project richt zich op de ontwikkeling van de biotechnologische en chemische procesvoering om op basis van mycelium een alternatief voor leer te produceren. In vergelijking met leer is het voordeel van mycelium dat geen runderen nodig zijn, de productie kan plaatsvinden onder industriële condities en met gebruik van reststromen, de CO2 uitstoot alsook hoeveelheid afval verlaagd wordt, en het gebruik van toxische stoffen zoals chroom wordt vervangen door biobased alternatieven. In het project zullen de procescondities worden bepaald die leiden tot de vorming van optimaal mycelium. Daartoe zullen twee verschillende schimmels worden gekweekt in bioreactoren bij de Hogeschool Arnhem Nijmegen (HAN), waarbij specifiek de effecten van de procescondities (temperatuur, pH, shear, beluchting) en de samenstelling van het kweekmedium op groei van het mycelium en materiaal eigenschappen zullen worden onderzocht. De meest optimale condities zullen vervolgens worden opgeschaald. Op het op deze wijze verkregen materiaal zal Mylium BV een aantal nabehandelingsstappen uitvoeren om de sterkte, elasticiteit, en duurzaamheid van het product te vergroten. Daartoe worden biobased plasticizers, cross-linkers en/of flexibility agents gebruikt. Het resulterende eindproduct zal middels specifiek fysieke testen vergeleken worden met leer alsook worden voorgelegd aan mogelijke klanten. Indien beide resultaten positief zijn kan het betreffende proces na het project verder worden opgeschaald voor toepassing naar de markt.
Horticulture crops and plants use only a limited part of the solar spectrum for their growth, the photosynthetically active radiation (PAR); even within PAR, different spectral regions have different functionality for plant growth, and so different light spectra are used to influence different properties of the plant, such as leaves, fruiting, longer stems and other plant properties. Artificial lighting, typically with LEDs, has been used to provide these specified spectra per plant, defined by their light recipe. This light is called steering light. While the natural sunlight provides a much more sustainable and abundant form of energy, however, the solar spectrum is not tuned towards specific plant needs. In this project, we capitalize on recent breakthroughs in nanoscience to optimally shape the solar spectrum, and produce a spectrally selective steering light, i.e. convert the energy of the entire solar spectrum into a spectrum most useful for agriculture and plant growth to utilize the sustainable solar energy to its fullest, and save on artificial lighting and electricity. We will take advantage of the developed light recipes and create a sustainable alternative to LED steering light, using nanomaterials to optimally shape the natural sunlight spectrum, while maintaining the increased yields. As a proof of concept, we are targeting the compactness of ornamental plants and seek to steer the plants’ growth to reduce leaf extension and thus be more valuable. To realize this project the Peter Schall group at the UvA leads this effort together with the university spinout, SolarFoil, whose expertise lies in the development of spectral conversion layers for horticulture. Renolit - a plastic manufacturer and Chemtrix, expert in flow synthesis, provide expertise and technical support to scale the foil, while Ludvig-Svensson, a pioneer in greenhouse climate screens, provides the desired light specifications and tests the foil in a controlled setting.