The development of the World Wide Web, the emergence of social media and Big Data have led to a rising amount of data. Infor¬mation and Communication Technol¬ogies (ICTs) affect the environment in various ways. Their energy consumption is growing exponentially, with and without the use of ‘green’ energy. Increasing envi¬ronmental aware¬ness has led to discussions on sustainable development. The data deluge makes it not only necessary to pay attention to the hard‑ and software di¬mensions of ICTs but also to the ‘value’ of the data stored. In this paper, we study the possibility to methodically reduce the amount of stored data and records in organizations based on the ‘value’ of informa¬tion, using the Green Archiving Model we have developed. Reducing the amount of data and records in organizations helps in allowing organizations to fight the data deluge and to realize the objectives of both Digital Archiving and Green IT. At the same time, methodi¬cally deleting data and records should reduce the con¬sumption of electricity for data storage. As a consequencs, the organizational cost for electricity use should be reduced. Our research showed that the model can be used to reduce [1] the amount of data (45 percent, using Archival Retention Levels and Retention Schedules) and [2] the electricity con¬sumption for data storage (resulting in a cost reduction of 35 percent). Our research indicates that the Green Ar¬chiving Model is a viable model to reduce the amount of stored data and records and to curb electricity use for storage in organi¬zations. This paper is the result of the first stage of a research project that is aimed at devel¬oping low power ICTs that will automa¬tically appraise, select, preserve or permanently delete data based on their ‘value’. Such an ICT will automatically reduce storage capacity and reduce electricity con¬sumption used for data storage. At the same time, data dispos¬al will reduce overload caused by storing the sa¬me data in different for¬mats, it will lower costs and it reduces the po¬tential for liability.
Since it is insufficiently clear to urban planners in the Netherlands to what extent design measures can reduce heat stress and which urban spaces are most comfortable, this study evaluates the impact of shading, urban water, and urban green on the thermal comfort of urban spaces during hot summer afternoons. The methods used include field surveys, meteorological measurements, and assessment of the PET (physiological equivalent temperature). In total, 21 locations in Amsterdam (shaded and sunny locations in parks, streets, squares, and near water bodies) were investigated. Measurements show a reduction in PET of 12 to 22 °C in spaces shaded by trees and buildings compared to sunlit areas, while water bodies and grass reduce the PET up to 4 °C maximum compared to impervious areas. Differences in air temperature between the locations are generally small and it is concluded that shading, water and grass reduce the air temperature by roughly 1 °C. The surveys (n = 1928) indicate that especially shaded areas are perceived cooler and more comfortable than sunlit locations, whereas urban spaces near water or green spaces (grass) were not perceived as cooler or thermally more comfortable. The results of this study highlight the importance of shading in urban design to reduce heat stress. The paper also discusses the differences between meteorological observations and field surveys for planning and designing cool and comfortable urban spaces. Meteorological measurements provide measurable quantities which are especially useful for setting or meeting target values or guidelines in reducing urban heat in practice.
In 2021, Citython editions were held for the European cities of Eindhoven (Netherlands), Bilbao and Barcelona (Spain), Hamburg (Germany), and Lublin (Poland). Within this project, BUAS contributed to the organization of CITYTHON Eindhoven in cooperation with CARNET (an initiative by CIT UPC) and City of Eindhoven – an event which gives young talent the opportunity to work with mentors and experts for the development of innovative urban solutions. Participants of CITYTHON Eindhoven worked on three challenges:- Traffic safety in school zones - Travel to the campus- Make the city healthy The event took place between 18 May and 2 June 2021 with various experts, for example from ASML, City of Eindhoven and University of Amsterdam, giving inspirational talks and mentoring students throughout the ideation and solutions development process. The teams presented their solutions during the Dutch Technology Week and the winners were announced by Monique List-de Roos (Alderman Mobility and Transport, City of Eindhoven) on 2 June 2021. The role of BUAS within this project was to assist City of Eindhoven with the development of the challenges to be tackled by the participating teams, and find relevant speakers and mentors who would be supporting the students for the development of their solutions and jury members who would determine the winning teams. The project ended with a round table “Green and Safe Mobility for all: 5 Smart City(thon) Case studies” on November 17 organized as part of Smart City Expo World Congress 2021 in Barcelona. This project is funded by EIT Urban Mobility, an initiative of the European Institute of Innovation and Technology (EIT), a body of the European Union. EIT Urban Mobility acts to accelerate positive change on mobility to make urban spaces more livable. Learn more: eiturbanmobility.eu.Collaborating partnersCARNET (Lead organisation); Barcelona Institute of Technology for Habitat; Barcelona City Council; Bilbao City Hall; City of Hamburg; City of Eindhoven,; City of Lublin; Digital Hub Logistics Hamburg; Technical University of Catalonia, Tecnalia; UPC Technology Center.
Textiel (kleding en huishoudtextiel) is na voedsel, huisvesting en transport wereldwijd de sector met grootste milieu-impact. Op wereldschaal heeft de hele wereldwijde kledingindustrie meer dan 79 miljard m3 water verbruikt (2015) en 1715 miljoen ton CO2eq-emissies en meer dan 92 miljoen ton afval gegenereerd (2017). Naar schatting kopen Europeanen meer dan 26 kg textiel per persoon per jaar en wordt er zo’n 11 kg per persoon weggegooid. Hergebruik van textiel levert enorme CO2eq, water, energie en andere besparingen op. In het kader van Europa Circulair en de Greendeal, heeft de Europese Commissie heeft in maart 2022 mededeling gedaan over een Circulaire textiel strategie waar in 2030 alle textielproducten herbruikbaar moeten zijn en voor een groot deel van hergebruikte vezels zijn gemaakt. Het project DreamWeaveFactory heeft tot doel circulaire textiel voor huishoud, interieur en technische toepassingen te ontwerpen en op industriële pilotschaal te produceren met mechanisch gerecyclede vezels en op basis van circulaire en duurzame-design principes hiervoor nieuwe business modellen te ontwikkelen. Het DreamWeaveFactory project past daarvoor circulair geïnspireerde design-principes, zoals CIRCO, toe voor het ontwerpen van nieuwe circulaire textielproducten. Ontwikkelde Fablabs en Makerspaces bieden designers mogelijkheid deze ontwerpen met gerecyclede garens als prototype te weven, te breien, te tuften en eventueel plantaardig te verven. Een nieuw te realiseren unieke opgeschaalde Makerspace-Max met industriële weef en tuft machines geeft ontwerpers en deelnemende MKB-partners de mogelijkheid de duurzame ontwerpen op grotere schaal en seriematig te produceren. Nieuwe circulaire businessmodellen dragen bij aan het ontstaan van een duurzame textielsector met lage of geen milieu-effecten.
Urban open space has a huge impact on human health, well-being and urban ecosystems. One of the open spaces where the environmental and ecological challenges of cities manifest the most is the urban riverfront, often characterised by fragmented land use, lack of accessibility, heavy riverside vehicular traffic, and extreme degradation of river hydrology and ecology. More often than not, the current spatial design of the riverfront hinders rather than supports the delivery of ecosystem services and, in consequence, its potential to improve the health and well-being of urban inhabitants is diminished. Hence, the design of riverside open spaces is crucial. Urban and landscape design in those spaces requires instruments that can aid designers, planners, decision-makers and stakeholders in devising spatial interventions that integrate complex environmental and ecological goals in high quality public space design. By recognising the multiple environmental and ecological benefits of green space and water in the city, the project “I surf” applies a set of four design instruments, namely the Connector, the Sponge, the Integrator, and the Scaler. I surf is a three-phased project that tests, validates and updates these instruments through a design-driven research methodology involving two design workshops and expert meetings addressing three different riverside urban spaces in Amsterdam: in the Ij waterfront, along River Amstel, and on a site located on the canal network. The project concludes with an updated and transferrable instrument set available for urban and landscape design applications in Amsterdam and in other Dutch cities crossed by rivers.