Floating wetland treatment systems (FWTS) are an innovative stormwater treatment technology currently being trialled on a larger scale in Australia. FWTS provide support for selected plant species to remove pollutants from stormwater discharged into a water body. The plant roots provide large surface areas for biofilm growth, which serves to trap suspended particles and enable the biological uptake of nutrients by the plants. As FWTS can be installed at the start of the construction phase, they can start treating construction runoff almost immediately. FWTS therefore have the potential to provide the full range of stormwater treatment (e.g. sediment and nutrient removal) from the construction phase onwards. A 2,100m 2 FWTS has been installed within a greenfield development site on the Sunshine Coast, Queensland. A four-year research study is currently underway which will target the following three objectives; (1) characterise the water quality of runoff from a greenfield development in the construction and operational phases; (2) verify the stormwater pollution removal performance of a FWTS during the construction and operational phases of a greenfield development; and (3) characterise the ability of FWTS to manage urban lake health. This extended abstract presents the proposed research methodology and anticipated outcomes of the study
MULTIFILE
Over the last two decades, institutions for higher education such as universities and colleges have rapidly expanded and as a result have experienced profound changes in processes of research and organization. However, the rapid expansion and change has fuelled concerns about issues such as educators' technology professional development. Despite the educational value of emerging technologies in schools, the introduction has not yet enjoyed much success. Effective use of information and communication technologies requires a substantial change in pedagogical practice. Traditional training and learning approaches cannot cope with the rising demand on educators to make use of innovative technologies in their teaching. As a result, educational institutions as well as the public are more and more aware of the need for adequate technology professional development. The focus of this paper is to look at action research as a qualitative research methodology for studying technology professional development in HE in order to improve teaching and learning with ICTs at the tertiary level. The data discussed in this paper have been drawn from a cross institutional setting at Fontys University of Applied Sciences, The Netherlands. The data were collected and analysed according to a qualitative approach.
DOCUMENT
In December of 2004 the Directorate General for Research and Technological Development (DG RTD) of the European Commission (EC) set up a High-Level Expert Group to propose a series of measures to stimulate the reporting of Intellectual Capital in research intensive Small and Medium-Sized Enterprises (SMEs). The Expert Group has focused on enterprises that either perform Research and Development (R&D), or use the results of R&D to innovate and has also considered the implications for the specialist R&D units of larger enterprises, dedicated Research & Technology Organizations and Universities. In this report the Expert Group presents its findings, leading to six recommendations to stimulate the reporting of Intellectual Capital in SMEs by raising awareness, improving reporting competencies, promoting the use of IC Reporting and facilitating standardization.
DOCUMENT
Lectorale rede
DOCUMENT
These are hard days for companies: they have to survive in a market that has been hit by a financial crisis. Many countries in Europe have severe problems trying to overcome this financial crisis. The main remedy applied by governments is to cut back on expenditure, but on the other hand it is said that it is important for a country, and especially for companies, to invest in innovation. These innovations should lead to innovative products that will lead to profitability turnovers for these companies and, as a consequence, improve the economic conditions in a country. Universities provide students with engineering competences, like develop innovation, with which they can show a higher degree of ability to answer complex questions such as how to become players in the market again. Teaching students to become more innovative engineers, Fontys University of Applied Sciences, Department of Engineering, has designed a curriculum in which students are educated in the competence innovation. An important element in the process of teaching innovation to students is the approach of inquiring into possibilities of patents. In the second semester of the first year, students can decide to join an innovative project called: ‘The invention project’. The basis of this project is that students are given the opportunity to create their own invention and with their previously acquired knowledge and skills they design, calculate, prototype and present their invention. In a research project, the experiences of students in this Invention Project have been analysed. The goal of this study was to understand what the success factors are for such a project. The basis of this inquiry is a questionnaire to identify the opinions of students. The research was carried out in the spring semester of 2012. In total 31 students were involved in this research. The results show that there was a high degree of student satisfaction about the Invention Project focused on innovation development. Success factors for this project in the first year of the curriculum were seen: 1 to work on own inventions, 2 development of student’s perception of the total product creation process and 3 to make students see the relevance of contacts with real professionals from industry and from the patent office in their own project. Improvements can be made by: 1 helping students more during the creativity stage in the project and 2 to coach them more on the aspect of engineering a successful invention of which they can be proud. This Invention project is a interesting with which collaborations with other universities can be set up.
DOCUMENT
Background: Many intervention development projects fail to bridge the gap from basic research to clinical practice. Instead of theory-based approaches to intervention development, co-design prioritizes the end users’ perspective as well as continuous collaboration between stakeholders, designers, and researchers throughout the project. This alternative approach to the development of interventions is expected to promote the adaptation to existing treatment activities and to be responsive to the requirements of end users. Objective: The first objective was to provide an overview of all activities that were employed during the course of a research project to develop a relapse prevention intervention for interdisciplinary pain treatment programs. The second objective was to examine how co-design may contribute to stakeholder involvement, generation of relevant insights and ideas, and incorporation of stakeholder input into the intervention design. Methods: We performed an embedded single case study and used the double diamond model to describe the process of intervention development. Using all available data sources, we also performed deductive content analysis to reflect on this process. Results: By critically reviewing the value and function of a co-design project with respect to idea generation, stakeholder involvement, and incorporation of stakeholder input into the intervention design, we demonstrated how co-design shaped the transition from ideas, via concepts, to a prototype for a relapse prevention intervention. Conclusions: Structural use of co-design throughout the project resulted in many different participating stakeholders and stimulating design activities. As a consequence, the majority of the components of the final prototype can be traced back to the information that stakeholders provided during the project. Although this illustrates how co-design facilitates the integration of contextual information into the intervention design, further experimental testing is required to evaluate to what extent this approach ultimately leads to improved usability as well as patient outcomes in the context of clinical practice.
LINK
TheUniversity of Twente, SaxionUniversityofAppliedSciences, ROCofTwente(vocationaleducation), centre of expertise TechYourFuture and the H2Hub Twente, in which various regional hydrogen interested corporations are involved, work together to shape a learning community (LC) for the development of innovative hydrogen technology. The cooperation between company employees, researchers and students provides a means to jointly work on solutions for real-life problems within the energy transition. This involves a cross-chain collaboration of technical programs, professorships and (field) experts, supported by human capital specialists. In the LC, a decentralized hydrogen production unit with storage of green hydrogen is designed and built. The main question for this research is: how can the design and construction process of an alkaline electrolyzer be arranged in a challenge based LC in which students, company employees (specialists) and researchers from the three educational institutions can learn, innovate, build-up knowledge and benefit? In this project the concept of a LC is developed and implemented in collaboration with companies and knowledge institutions at different levels. The concrete steps are described below: 1. Joint session between Human Resource and Development (HRD) specialists and engineers/researchers to explore the important factors for a LC. The results of this session will be incorporated into a blueprint for the LC by the human capital specialists. 2. The project is carried out according to the agreements of the blueprint. The blueprint is continuously updated based on the periodic reflections and observed points for improvement. 3. Impact interviews and periodic reflection review the proceeding of the LC in this engineering process. The first impact interview reveals that the concept of the LC is very beneficial for companies. It increases overall knowledge on hydrogen systems, promotes cooperation and connection with other companies and aids to their market proposition as well. Students get the opportunity to work in close contact with multiple company professionals and build up a network of their own. Also the cooperation with students from different disciplines broadens their view as a professional, something which is difficult to achieve in a mono-disciplinary project.
MULTIFILE
In recent years, it has become a commonplace to argue that cities should be the focus point of sustainable development. Various authors have presented a variety of arguments why cities should be the preferred target to foster sustainable development-focused innovation; - The average consumption of resources of urban dwellers is higher. - The population of cities is growing continuously, while rural populations stabilize. - Deteriorating living conditions and segregation in cities caused by processes of gentrification of traditional neighbourhoods that drive out lower income groups to the suburbs. - Cities are ‘concentrated’ emitters of pollutants and therefore solutions and re-use might be easier to implement. https://doi.org/10.3390/su11185013 LinkedIn: https://www.linkedin.com/in/karel-mulder-163aa96/
MULTIFILE
The World Health Organization engages cities and communities all over the world in becoming age-friendly. There is a need for assessing the age-friendliness of cities and communities by means of a transparently constructed and validated tool which measures the construct as a whole. The aim of this study was to develop a questionnaire measuring age-friendliness, providing full transparency and reproducibility. The development and validation of the Age Friendly Cities and Communities Questionnaire (AFCCQ) followed the criteria of the COnsensus-based Standards for selection of health Measurement INstruments (COSMIN). Four phases were followed: (1) development of the conceptual model, themes and items; (2) initial (qualitative) validation; (3) psychometric validation, and (4) translating the instrument using the forward-backward translation method. This rigorous process of development and validation resulted in a valid, psychometrically sound, comprehensive 23-item questionnaire. This questionnaire can be used to measure older people’s experiences regarding the eight domains of the WHO Age-Friendly Cities model, and an additional financial domain. The AFCCQ allows practitioners and researchers to capture the age-friendliness of a city or community in a numerical fashion, which helps monitor the age-friendliness and the potential impact of policies or social programmes. The AFCCQ was created in Dutch and translated into British-English. CC-BY Original article: https://doi.org/10.3390/ijerph17186867 (This article belongs to the Special Issue Feature Papers "Age-Friendly Cities & Communities: State of the Art and Future Perspectives") https://www.dehaagsehogeschool.nl/onderzoek/lectoraten/details/urban-ageing#over-het-lectoraat Extra: Vragenlijst bijlage / Questionnaire attachement
MULTIFILE
The importance of teaching engineering students innovation development is commonly clearly understood. It is essential to achieve products which are attractive and profitable in the market. To achieve this, an institute of engineering education has to provide students with needed knowledge, skills and attitudes including both technical and business orientation. This is important especially for SME’s. Traditionally, education of engineering provides students with basic understanding how to solve common technical problems. However companies need wider view to achieve new products. Universities of applied Sciences in Oulu and Eindhoven want to research what is the today’s educational situation for this aim, to find criteria to improve the content of the educational system, and to improve the educational system. Important stakeholders are teachers and students within the institute but also key-persons in companies. The research is realized by questionnaires and interviews from which a current situation can be found. The research will also include the opinion of management who give possibilities to change the curriculum. By this research more insight will be presented about how to re-design a current curriculum. The research will act as basis for this discussion in SEFI-conference about formulating a curriculum that includes elements for wide-ranging knowledge and skills to achieve innovations especially in SME’s.
DOCUMENT