In November 2019, the High Performance Greenhouse project (HiPerGreen) was nominated for the RAAK Award 2019, as one of the best applied research projects in the Netherlands. This paper discusses the challenges faced, lessons learned and critical factors in making the project into a success.
DOCUMENT
This paper describes the concept of a new algorithm to control an Unmanned Aerial System (UAS) for accurate autonomous indoor flight. Inside a greenhouse, Global Positioning System (GPS) signals are not reliable and not accurate enough. As an alternative, Ultra Wide Band (UWB) is used for localization. The noise is compensated by combining the UWB with the delta position signal from a novel optical flow algorithm through a Kalman Filter (KF). The end result is an accurate and stable position signal with low noise and low drift.
DOCUMENT
The Dutch greenhouse horticulture industry is characterized by world leadership in high-tech innovation. The dynamics of this playing field are innovation in production systems and automation, reduction in energy consumption and sharing limited space. However, international competitive advantage of the industry is under pressure and sustainable growth of individual enterprises is no longer a certainty. The sector's ambition is to innovate better and grow faster than the competition in the rest of the world. Realizing this ambition requires strengthening the knowledge base, stimulating entrepreneurship, innovation (not just technological, but especially business process innovation). It also requires educating and professionalizing people. However, knowledge transfer in this industry is often fragmented and innovation through horizontal and vertical collaboration throughout the value chain is limited. This paper focuses on the question: how can the grower and the supplier in the greenhouse horticulture chain gain competitive advantage through radical product and process innovation. The challenge lies in time- to-market, in customer relationship, in developing new product/market combinations and in innovative entrepreneurship. In this paper an innovation and entrepreneurial educational and research programme is introduced. The programme aims at strengthening multidisciplinary collaboration between enterprise, education and research. Using best practice examples, the paper illustrates how companies can realize growth and improve the innovative capacity of the organization as well as the individual by linking economic and social sustainability. The paper continues to show how participants of the program develop competencies by means of going through a learning cycle of single-loop, double-loop and triple loop learning: reduction of mistakes, change towards new concepts and improvement of the ability to learn. Finally, the paper illustrates the importance of combining enterprise, education and research in regional networks, with examples from the greenhouse horticulture sector. These networks generate economic growth and international competitiveness by acting as business accelerators.
DOCUMENT
How can the grower and the supplier in the greenhouse horticulture industry gain competitive advantage through radical innovation? The challenge lies in time- to-market, in customer relationship, in developing new product/market combinations and in innovative entrepreneurship. Realizing this ambition requires strengthening the knowledge base, stimulating innovation, entrepreneurship and education. It also requires professionalizing people. In this paper an innovation and entrepreneurial educational and research programme is introduced. This KITE120-programme aims at strengthening multidisciplinary collaboration between enterprise, education and research. It helps making the step from ambition to action, and from incremental to radical innovation. We call this an 'Amazing Jump'.
DOCUMENT
The Dutch greenhouse horticultural industry is characterized by world leadership in high-tech innovation. The dynamics of this playing field are innovation in production systems and automation, reduction in energy consumption and sharing limited space. However, international competitive advantage of the industry is under pressure and sustainable growth of individual enterprises is no longer a certainty. The sector's ambition is to innovate better and grow faster than the competition in the rest of the world. Realizing this ambition requires strengthening the knowledge base, stimulating entrepreneurship, innovation (not just technological, but especially business process innovation). It also requires educating and professionalizing people. However, knowledge transfer in this industry is often fragmented and innovation through collaboration takes up a mere 25-30% of the opportunities. The greenhouse horticulture sector is generally characterized by small scale, often family run businesses. Growers often depend on the Dutch auction system for their revenues and suppliers operate mainly independently. Horizontal and vertical collaboration throughout the value chain is limited. This paper focuses on the question: how can the grower and the supplier in the greenhouse horticulture chain gain competitive advantage through radical product and process innovation. The challenge lies in time- to-market, in customer relationship, in developing new product/market combinations and in innovative entrepreneurship. In this paper an innovation and entrepreneurial educational and research programme is introduced. The programme aims at strengthening multidisciplinary collaboration between enterprise, education and research. Using best practice examples, the paper illustrates how companies can realize growth and improve innovative capabilities of the organization as well as the individual by linking economic and social sustainability. The paper continues to show how participants of the programme develop competencies by means of going through a learning cycle of single-loop, double-loop and triple loop learning: reduction of mistakes, change towards new concepts and improvement of the ability to learn. Furthermore, the paper discusses our four-year programme, whose objectives are trying to eliminate interventions that stimulate the innovative capabilities of SME's in this sector and develop instruments that are beneficial to organizations and individual entrepreneurs and help them make the step from vision to action, and from incremental to radical innovation. Finally, the paper illustrates the importance of combining enterprise, education and research in networks with a regional, national and international scope, with examples from the greenhouse horticulture sector. These networks generate economic regional and national growth and international competitiveness by acting as business accelerators.
DOCUMENT
This review paper examines the greenhouse gas (GHG) emission reduction targets postulated by a range of organizations seeking to reduce the consequences of global climate change and how, or if, the global tourism sector can achieve its share of those targets. It takes both existing estimates of current tourism GHG emissions and emissions projected in a business-as-usual scenario through to 2035 and contrasts them with the "aspirational" emission reduction targets proclaimed by the sector. Analysis reveals that with current high-growth emission trends in tourism, the sector could become a major global source of GHGs in the future if other economic sectors achieve significant emission reductions. Success in achieving emission reductions in tourism is found to be largely dependent on major policy and practice changes in air travel, and stated tourism emission reduction targets do not appear feasible without volumetric changes considering the limited technical emission reduction potential currently projected for the aviation sector. The opportunities and challenges associated with a shift towards a low-carbon global economy are anticipated to transform tourism globally and in all respects. Much greater consideration and dissemination of these issues is required to inform future tourism development and travel decisions.
DOCUMENT
Energiebeheer gericht aanpakken, Het analyseren van doelstellingen, resultaten en impacts van energie- en broeikasgasbeheersprogramma’s in bedrijven (met een samenvatting in het Nederlands): De wereldwijde uitstoot van broeikasgassen moet drastisch worden teruggebracht om de mondiale stijging van de temperatuur tot het relatief veilige niveau van maximaal 2 graden Celsius te beperken. In de komende decennia zal de verbetering van de energie-efficiëntie de belangrijkste strategie zijn voor het verminderen van de energiegerelateerde uitstoot van broeikasgassen. Hoewel er een enorm potentieel is voor verbetering van de energie-efficiëntie, wordt een groot deel daarvan nog niet benut. Dit wordt veroorzaakt door diverse investeringsbarrières die de invoering van maatregelen voor energie-efficiëntie verbetering verhinderen. De invoering van energiemanagement wordt vaak beschouwd als een manier om dergelijke barrières voor energiebesparing te overwinnen. De invoering van energiemanagement in bedrijven kan worden gestimuleerd door de introductie van programma's voor energie-efficiëntie verbetering en vermindering van de uitstoot van broeikasgassen. Deze programma's zijn vaak een combinatie van verschillende elementen zoals verplichtingen voor energiemanagement; (ambitieuze) doelstellingen voor energiebesparing of beperking van de uitstoot van broeikasgassen; de beschikbaarheid van regelingen voor stimulering, ondersteuning en naleving; en andere verplichtingen, zoals openbare rapportages, certificering en verificatie. Tot nu toe is er echter beperkt inzicht in het proces van het formuleren van ambitieuze doelstellingen voor energie-efficiëntie verbetering of het terugdringen van de uitstoot van broeikasgassen binnen deze programma's, in de gevolgen van de invoering van dergelijke programma's op de verbetering van het energiemanagement, en in de impact van deze programma's op energiebesparing of de vermindering van de uitstoot van broeikasgassen. De centrale onderzoeksvraag van dit proefschrift is als volgt geformuleerd: "Wat is de impact van energie- en broeikasgasmanagement programma’s op het verbeteren van het energiemanagement in de praktijk, het versnellen van de energieefficiëntie verbetering en het beperken van de uitstoot van broeikasgassen in bedrijven?".
DOCUMENT
Greenhouse gas emissions from air transport, and methods to calculate them, are notwell defined in the current literature. While calculating the direct emissions of CO2 is already causefor some debate, the contribution of other emissions and impacts – like nitrogen oxides (NOx),contrails, water vapour – to climate change still lacks a reliable metric. As aviation is the largestemitter of greenhouse gases within tourism, accurate estimates of carbon and non-carbon emissions are important. This paper presents some standardisation as well as general insights to assistresearchers assessing the impact of aviation on climate change in scenario studies or evaluatingmitigation policies. The IPCC introduced a radiative forcing index (RFI) to measure the role of aviation in climate change, which is in scenario studies or evaluations of policies often used as a kind ofconstant ‘equivalence factor’. The paper shows this to be inaccurate and proposes ways to accountfor both carbon and non-carbon climate impacts of air transport
DOCUMENT
On April 12th 2019, researchers, students and consortia gathered at the World Horti Centre for an update on the overall status of the HiPerGreen project. The day consisted of presentations from a variety of the HiPerGreen students, staff and guest speakers. There were a variety of exciting updates from the technological and biological realms of the project, as well as an insightful presentation from Deliflor’s Geert Van Geest on Deliflor and their interests in imaging of chrysanthemums. Several new pieces of technology have arisen from the HiPerGreen project. The first being a rail-based imaging system capable of traversing the greenhouse using the heating pipes commonly found in Dutch greenhouses. The drone landing dock has also taken great steps forward and finally, HiPerGreen has partnered with drone manufacture Avular, a company working on the world’s first ‘ultra-wide band’ localized indoor drone. From a biological standpoint significant progress has been made regarding long-term plant monitoring with a focus on reducing fusarium occurrence in the crop. Students are working in climate chambers to model the symptoms of fusarium infection in orchids. Students are also working at Deliflor using the railsystem to measure uniformity in chrysanthemum test crops. Research with the multispectral camera continued and the team hopes to integrate the imaging into mass plant monitoring. The sympoium was concluded with a drink.
DOCUMENT